Abstract

Focused beam shaping is very effective in material laser processing, optical tweezers, and laser microscopy. In particular, size minimization of shaped beams has attracted much attention because it is directly connected to the performance in these applications. In this paper, we demonstrated spatial phase shaping of ultrashort laser pulses to overcome the diffraction limit. In the experiment, it was found that the beam diameter of the sub-diffraction-limit spot was 0.60-times smaller than the diffraction-limit spot. To verify the effectiveness of the proposed method, a sub-diffraction-limit spot was applied to femtosecond laser processing. The diameter of the structure processed by the sub-diffraction-limit spot was reduced to 0.39-times thanks to the nonlinearity of femtosecond laser processing. Furthermore, as the possibility to generate other beam shapes, light patterns formed with combinations of connected and unconnected spots were also demonstrated by the method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction-limited ring beam generated by radial grating

Satoshi Hasegawa, Haruyasu Ito, Haruyoshi Toyoda, and Yoshio Hayasaki
OSA Continuum 1(2) 283-294 (2018)

Creating a nondiffracting beam with sub-diffraction size by a phase spatial light modulator

Jing Wu, Zhixiang Wu, Yinghu He, Anping Yu, Zhihai Zhang, Zhongquan Wen, and Gang Chen
Opt. Express 25(6) 6274-6282 (2017)

Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses

François Salin, Catherine Le Blanc, Jeff Squier, and Chris Barty
Opt. Lett. 23(9) 718-720 (1998)

References

  • View by:
  • |
  • |
  • |

  1. C.-S. Guo, Z.-Y. Rong, H.-T. Wang, Y. Wang, and L. Cai, “Phase-shifting with computer-generated holograms written on a spatial light modulator,” Appl. Opt. 42(35), 6975–6979 (2003).
    [Crossref]
  2. J. Rosen and G. Brooker, “Digital spatially incoherent fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref]
  3. L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
    [Crossref]
  4. J. E. Morris and M. R. Feldman, “Reconfigurable optical interconnects by a combined computer-generated hologram and spatial light modulator method,” Appl. Opt. 33(17), 3683–3694 (1994).
    [Crossref]
  5. A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
    [Crossref]
  6. Y. Hayasaki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 277835 (1996).
    [Crossref]
  7. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
    [Crossref]
  8. M. Reicherter, T. Haist, E. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
    [Crossref]
  9. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
    [Crossref]
  10. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
    [Crossref]
  11. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref]
  12. I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
    [Crossref]
  13. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
    [Crossref]
  14. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
    [Crossref]
  15. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
    [Crossref]
  16. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  17. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
    [Crossref]
  18. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [Crossref]
  19. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref]
  20. G. T. Di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento 9(S3), 426–438 (1952).
    [Crossref]
  21. F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
    [Crossref]
  22. T. R. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156(4-6), 227–230 (1998).
    [Crossref]
  23. T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
    [Crossref]
  24. K. Piché, J. Leach, A. S. Johnson, J. Z. Salvail, M. I. Kolobov, and R. W. Boyd, “Experimental realization of optical eigenmode super-resolution,” Opt. Express 20(24), 26424–26433 (2012).
    [Crossref]
  25. R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  26. Y. Ogura, M. Aino, and J. Tanida, “Design and demonstration of fan-out elements generating an array of subdiffraction spots,” Opt. Express 22(21), 25196–25207 (2014).
    [Crossref]
  27. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
    [Crossref]

2014 (1)

2013 (2)

T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[Crossref]

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

2012 (1)

2011 (1)

2008 (3)

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[Crossref]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

2007 (4)

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
[Crossref]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
[Crossref]

2006 (1)

2005 (2)

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

2004 (2)

L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

2003 (2)

1999 (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

M. Reicherter, T. Haist, E. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[Crossref]

1998 (2)

T. R. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156(4-6), 227–230 (1998).
[Crossref]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

1996 (1)

Y. Hayasaki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 277835 (1996).
[Crossref]

1994 (1)

1972 (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1952 (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento 9(S3), 426–438 (1952).
[Crossref]

Aino, M.

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Audouard, E.

Bashaw, M. C.

L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Booth, M. J.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

Bos, P. J.

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Boyd, R. W.

Brooker, G.

Brosh, I.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Cai, L.

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Chen, Y.

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

de Abajo, F. J. G.

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Di Francia, G. T.

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento 9(S3), 426–438 (1952).
[Crossref]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Emiliani, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Farah, N.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Feldman, M. R.

Gerchberg, R. W.

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Golan, L.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Guo, C.-S.

Haist, T.

Hasegawa, S.

Hayasaki, Y.

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

Y. Hayasaki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 277835 (1996).
[Crossref]

Hesselink, L.

L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Hirao, K.

Huang, F. M.

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

Huignard, J.-P.

Huot, N.

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

Johnson, A. S.

Kelemen, L.

Kolobov, M. I.

Kozacki, T.

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Kujawinska, M.

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Larat, C.

Leach, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

Loiseaux, B.

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Michalkiewicz, A.

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Miura, K.

Morris, G. M.

T. R. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156(4-6), 227–230 (1998).
[Crossref]

Morris, J. E.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

Ogura, Y.

Orlov, S.

L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Ormos, P.

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Piché, K.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

Reicherter, M.

Reutsky-Gefen, I.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Rogers, E. T.

Rong, Z.-Y.

Rosen, J.

Roy, T.

Sakakura, M.

Sales, T. R.

T. R. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156(4-6), 227–230 (1998).
[Crossref]

Salvail, J. Z.

Sanner, N.

Sawano, T.

Schejter, A.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Shimotsuma, Y.

Shoham, S.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Takahashi, H.

Takita, A.

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tanida, J.

Tiziani, H. J.

Tsur, L.

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Valkai, S.

Wagemann, E.

Wang, H.-T.

Wang, X.

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Wang, Y.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Zheludev, N. I.

T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[Crossref]

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A: Pure Appl. Opt. 9(9), S285–S288 (2007).
[Crossref]

Nat. Commun. (1)

I. Reutsky-Gefen, L. Golan, N. Farah, A. Schejter, L. Tsur, I. Brosh, and S. Shoham, “Holographic optogenetic stimulation of patterned neuronal activity for vision restoration,” Nat. Commun. 4(1), 1509 (2013).
[Crossref]

Nat. Methods (1)

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Nuovo Cimento (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento 9(S3), 426–438 (1952).
[Crossref]

Opt. Commun. (1)

T. R. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156(4-6), 227–230 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
[Crossref]

Optik (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Philos. Trans. R. Soc., A (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

Proc. IEEE (1)

L. Hesselink, S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Proc. SPIE (2)

A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, “Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator,” Proc. SPIE 5531, 85–95 (2004).
[Crossref]

Y. Hayasaki, “Optical manipulation of microparticles using diffractive optical elements,” Proc. SPIE 2778, 277835 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Algorithm of CGH design. (b) Schematic diagram of the arrangement of the diffraction spots and constraints of each spot in the algorithm. (c) Generation of sub-diffraction-limit spot by destructive interference between surrounding spots.
Fig. 2.
Fig. 2. Experimental setup.
Fig. 3.
Fig. 3. CGHs together with intensity and phase images of computer and experimental reconstructions in the case of (a) a diffraction-limit spot and (b) (c) (d) sub-diffraction-limit spots with $\textit {r}_\textrm{n}$ of 0.50, 0.25 and 0.10, respectively.
Fig. 4.
Fig. 4. Diameter of center spot versus distance between surrounding spots with $\textit {r}_\textrm{n}$ of 0.50, 0.25 and 0.10. Solid lines and filled points indicate simulation and experimental results, respectively.
Fig. 5.
Fig. 5. Intensity distribution of focused beam and its profile along the z-axis in the case of (a) diffraction-limit spot and sub-diffraction-limit spot with $\textit {r}_\textrm{n}$ of (b) 0.50, (c) 0.25 and (d) 0.10, respectively.
Fig. 6.
Fig. 6. (a) Diameter of fabricated structure versus $\textit {E}$ of the spot with the diffraction-limit spot and sub-diffraction limit spots with $\textit {r}_\textrm{n}$ of 0.50, 0.25 and 0.10, respectively, when $\textit {d}_\textrm{norm}$ was fixed to 1.25. (b) Diameter of fabricated structure versus $\textit {d}_\textrm{norm}$ with $\textit {r}_\textrm{n}$ of 0.25 and 0.10, respectively, when $\textit {E}$ was fixed to 0.17 µJ.
Fig. 7.
Fig. 7. Focused beams generated by connected and unconnected surrounding spots.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a ^ out (i) = a out (i) , ϕ ^ out (i) = { ϕ out (i) ( 0 ϕ out (i) < π / 2 ) π ϕ out (i) ( π / 2 ϕ out (i) < π ) ϕ out (i) π ( π ϕ out (i) < 3 π / 2 ) 2 π ϕ out (i) ( 3 / 2 π ϕ out (i) < 2 π ) ,
a ^ out (i) = r n I c (i) , ϕ ^ out (i) = { ϕ out (i) + π ( 0 ϕ out (i) < π / 2 ) 2 π ϕ out (i) ( π / 2 ϕ out (i) < π ) ϕ out (i) ( π ϕ out (i) < 3 π / 2 ) 3 π ϕ out (i) ( 3 / 2 π ϕ out (i) < 2 π ) .
a ^ out (i) = 0 , ϕ ^ out (i) = ϕ out (i) ,
a ^ out (i) = C I c (i) , ϕ ^ out (i) = ϕ out (i) ,
D = ω [ 2 l n ( E E th ) ] 1 2 ,