Abstract

In this paper, we present a static imaging Fourier transform spectrometer (sIFTS) for the mid-infrared spectral range. The system employs imaging optics, a single-mirror interferometer, and an uncooled broadband microbolometer array. As the hyperspectral data cube is acquired using a windowing method, a comparatively high light throughput in a spectral range from 2600 cm−1 to 800 cm−1, respectively 3.8 µm to 13 µm is achieved. The spectral resolution is 12 cm−1, and the spatial resolution amounts to 16 lp/mm, corresponding to a resolution of 62.5 µm at a design wavelength of 10.6 µm. As the employed spectrometer, in contrast to scanning Fourier transform infrared (FTIR) spectrometers, contains no moving parts, the measurement rate is mainly limited by the detector read-out and is currently 25 Hz. After an evaluation of the spatial resolution by both simulations and experimental results, the spatially resolved transmission spectra of a sample containing different polymer films are recorded and compared to a laboratory FTIR spectrometer. Thereby, the acquired spectra show good agreement. As the system combines both a spectrometer with low internal light loss and a windowing technique allowing high etendue, the presented hyperspectral imager shows significant potential especially for the mid-infrared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral imaging with a liquid crystal polarization interferometer

Alex Hegyi and Joerg Martini
Opt. Express 23(22) 28742-28754 (2015)

Broadband static Fourier transform mid-infrared spectrometer

Michael H. Köhler, Stefan S. Naßl, Patrick Kienle, Xingchen Dong, and Alexander W. Koch
Appl. Opt. 58(13) 3393-3400 (2019)

Fourier-transform infrared imaging using a rapid-scan spectrometer

C. M. Snively, S. Katzenberger, G. Oskarsdottir, and J. Lauterbach
Opt. Lett. 24(24) 1841-1843 (1999)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Shaw and H.-h. K. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14, 3–28 (2003).
  2. Y. Ferrec and J. Primot, “Spaceborne hyperspectral imaging with a static Fourier transform spectrometer,” SPIE Newsroom (01/2013).
  3. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref]
  4. H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
    [Crossref]
  5. Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
    [Crossref]
  6. A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
    [Crossref]
  7. W. Wang and J. Paliwal, “Near-infrared spectroscopy and imaging in food quality and safety,” Sens. Instrumentation for Food Qual. Saf. 1(4), 193–207 (2007).
    [Crossref]
  8. L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
    [Crossref]
  9. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
    [Crossref]
  10. P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
    [Crossref]
  11. X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
    [Crossref]
  12. X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
    [Crossref]
  13. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
    [Crossref]
  14. M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
    [Crossref]
  15. M. C. Phillips and N. Hô, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16(3), 1836 (2008).
    [Crossref]
  16. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external-cavity quantum-cascade laser,” Opt. Lett. 27(20), 1788 (2002).
    [Crossref]
  17. J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
    [Crossref]
  18. M. Zucco, M. Pisani, V. Caricato, and A. Egidi, “A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors,” Opt. Express 22(2), 1824–1834 (2014).
    [Crossref]
  19. J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
    [Crossref]
  20. P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
    [Crossref]
  21. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34(31), 7228–7230 (1995).
    [Crossref]
  22. R. G. Sellar and J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34(16), 2931–2933 (1995).
    [Crossref]
  23. J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
    [Crossref]
  24. M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
    [Crossref]
  25. M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).
  26. M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
    [Crossref]
  27. M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
    [Crossref]
  28. M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
    [Crossref]
  29. R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
    [Crossref]
  30. L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
    [Crossref]
  31. H. Gross, Handbook of Optical Systems, Vol. 2: Physical Image Formation, 1st ed. (Wiley-VCH, 2005).

2019 (3)

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
[Crossref]

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

2018 (3)

J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

2017 (2)

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

2016 (1)

2014 (2)

2012 (1)

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

2009 (1)

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

2008 (2)

M. C. Phillips and N. Hô, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16(3), 1836 (2008).
[Crossref]

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

2007 (2)

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

W. Wang and J. Paliwal, “Near-infrared spectroscopy and imaging in food quality and safety,” Sens. Instrumentation for Food Qual. Saf. 1(4), 193–207 (2007).
[Crossref]

2005 (1)

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

2004 (1)

L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

2003 (1)

G. A. Shaw and H.-h. K. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14, 3–28 (2003).

2002 (1)

2000 (1)

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

1996 (1)

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

1995 (4)

J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34(31), 7228–7230 (1995).
[Crossref]

R. G. Sellar and J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34(16), 2931–2933 (1995).
[Crossref]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
[Crossref]

1993 (1)

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Akbari, H.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Berer, T.

Blatt, J. H.

Bodkin, W. A.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Brandstetter, M.

Budney, C.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Burke, H.-h. K.

G. A. Shaw and H.-h. K. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14, 3–28 (2003).

Caricato, V.

Chalus, P.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Chen, G. Z.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Cobo, A.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Conde, O. M.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Cullen, P.

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Daly, J. T.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Dong, J.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

Dong, X.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
[Crossref]

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Downey, G.

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Dowrey, A. E.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Duswald, K.

Edmond, A.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Egidi, A.

Eismann, M. T.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Faist, J.

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Feller, G.

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

Ferrec, Y.

Y. Ferrec and J. Primot, “Spaceborne hyperspectral imaging with a static Fourier transform spectrometer,” SPIE Newsroom (01/2013).

Fields, P. G.

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

Figueroa, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
[Crossref]

Folkman, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
[Crossref]

Frias, J.

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Garcia-Allende, P. B.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Gowen, A.

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Greengard, L.

L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Gross, H.

H. Gross, Handbook of Optical Systems, Vol. 2: Physical Image Formation, 1st ed. (Wiley-VCH, 2005).

Halig, L. V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Haren, R.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Hinck, K.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Hô, N.

Horton, K. A.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Horton, R. F.

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

Irwin, J. W.

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

Jakobi, M.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Jayas, D. S.

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

Karch, B. K.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Kerr, R. B.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Kienle, P.

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
[Crossref]

Kilgus, J.

Koch, A. W.

M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
[Crossref]

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
[Crossref]

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Köhler, M. H.

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

M. H. Köhler, S. S. Naßl, P. Kienle, X. Dong, and A. W. Koch, “Broadband static Fourier transform mid-infrared spectrometer,” Appl. Opt. 58(13), 3393–3400 (2019).
[Crossref]

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Langer, G.

Lee, J.-Y.

L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Levin, I. W.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Lewis, E. N.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Lie, J.

J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
[Crossref]

Lopez-Higuera, J. M.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

Lucey, P. G.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Marcott, C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Mason, J.

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

Master, V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Mirapeix, J.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Mudge, J.

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

Müller, A.

Murr, P. J.

M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
[Crossref]

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Naßl, S. S.

Nguyen, T. T.

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

Ni, M.

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

Nieh, P. T.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Noto, J.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

O’Donnell, C.

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Osunkoya, A.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Paliwal, J.

W. Wang and J. Paliwal, “Near-infrared spectroscopy and imaging in food quality and safety,” Sens. Instrumentation for Food Qual. Saf. 1(4), 193–207 (2007).
[Crossref]

Phillips, M. C.

Pisani, M.

Primot, J.

Y. Ferrec and J. Primot, “Spaceborne hyperspectral imaging with a static Fourier transform spectrometer,” SPIE Newsroom (01/2013).

Pustogov, V.

Qi, C.

J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
[Crossref]

Rafert, B.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Rafert, J. B.

Rauscher, M. S.

M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
[Crossref]

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Ravikanth, L.

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

Reeder, R. C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Roggo, Y.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Rusk, T. B.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Schardt, M.

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
[Crossref]

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Schneller, W. J.

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

Schuster, D. M.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Schwaller, C.

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

Sellar, R. G.

Shaw, G. A.

G. A. Shaw and H.-h. K. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14, 3–28 (2003).

Story, G. M.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Sun, D.-W.

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

Totschnig, G.

Treado, P. J.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Tremmel, A. J.

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, “Static Fourier transform infrared spectrometer,” Opt. Express 24(7), 7767–7776 (2016).
[Crossref]

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Ulmschneider, M.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Wang, S.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Wang, W.

W. Wang and J. Paliwal, “Near-infrared spectroscopy and imaging in food quality and safety,” Sens. Instrumentation for Food Qual. Saf. 1(4), 193–207 (2007).
[Crossref]

White, N. D. G.

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

Wiesent, B. R.

Williams, T. J.

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

Willoughby, C. T.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
[Crossref]

Winter, F.

Wu, H.

J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
[Crossref]

Yetisen, A. K.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

Zhang, X.

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Zimmerleiter, R.

Zorin, I.

Zucco, M.

Adv. Opt. Mater. (1)

X. Dong, A. K. Yetisen, M. H. Köhler, J. Dong, S. Wang, M. Jakobi, X. Zhang, and A. W. Koch, “Microscale spectroscopic mapping of 2d optical materials,” Adv. Opt. Mater. 7(18), 1900324 (2019).
[Crossref]

Anal. Chem. (1)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67(19), 3377–3381 (1995).
[Crossref]

Anal. Chim. Acta (1)

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. Rev. (1)

X. Dong, M. Jakobi, S. Wang, M. H. Köhler, X. Zhang, and A. W. Koch, “A review of hyperspectral imaging for nanoscale materials research,” Appl. Spectrosc. Rev. 54(4), 285–305 (2018).
[Crossref]

Food Bioprocess Technol. (1)

L. Ravikanth, D. S. Jayas, N. D. G. White, P. G. Fields, and D.-W. Sun, “Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products,” Food Bioprocess Technol. 10(1), 1–33 (2017).
[Crossref]

J. Biomed. Opt. (2)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 0760051 (2012).
[Crossref]

Linc. Lab. J. (1)

G. A. Shaw and H.-h. K. Burke, “Spectral imaging for remote sensing,” Linc. Lab. J. 14, 3–28 (2003).

Opt. Commun. (1)

J. Lie, H. Wu, and C. Qi, “Compact static birefringent spectral range enhanced Fourier transform imaging spectrometer,” Opt. Commun. 426, 182–186 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (7)

J. T. Daly, W. A. Bodkin, W. J. Schneller, R. B. Kerr, J. Noto, R. Haren, M. T. Eismann, and B. K. Karch, “Tunable narrow-band filter for LWIR hyperspectral imaging,” Proc. SPIE 3948, 104 (2000).
[Crossref]

P. G. Lucey, K. A. Horton, T. J. Williams, K. Hinck, C. Budney, B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130 (1993).
[Crossref]

M. Ni, G. Feller, J. W. Irwin, J. Mason, and J. Mudge, “High spectral resolution Fourier transform imaging spectroscopy in a michelson interferometer with homodyne laser metrology control,” Proc. SPIE 7457, 74570L (2009).
[Crossref]

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1995).
[Crossref]

M. H. Köhler, T. T. Nguyen, P. Kienle, X. Dong, and A. W. Koch, “Setup and evaluation of a static imaging Fourier transform spectrometer for the mid-infrared spectral range,” Proc. SPIE 11056, 57 (2019).
[Crossref]

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

M. Schardt, C. Schwaller, A. J. Tremmel, and A. W. Koch, “Thermal stabilization of static single-mirror Fourier transform spectrometers,” Proc. SPIE 10210, 102100C (2017).
[Crossref]

Sens. Actuators, B (1)

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and fisher’s linear discriminant analysis,” Sens. Actuators, B 129(2), 977–984 (2008).
[Crossref]

Sens. Instrumentation for Food Qual. Saf. (1)

W. Wang and J. Paliwal, “Near-infrared spectroscopy and imaging in food quality and safety,” Sens. Instrumentation for Food Qual. Saf. 1(4), 193–207 (2007).
[Crossref]

SIAM Rev. (1)

L. Greengard and J.-Y. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
[Crossref]

Trends Food Sci. Technol. (1)

A. Gowen, C. O’Donnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Other (3)

Y. Ferrec and J. Primot, “Spaceborne hyperspectral imaging with a static Fourier transform spectrometer,” SPIE Newsroom (01/2013).

H. Gross, Handbook of Optical Systems, Vol. 2: Physical Image Formation, 1st ed. (Wiley-VCH, 2005).

M. Schardt, A. J. Tremmel, M. S. Rauscher, P. J. Murr, and A. W. Koch, “Spectral bandwidth limitations of static common-path and single-mirror Fourier transform infrared spectrometers,” OSA - Light.FTh2C.5 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Basic working principle of a static single-mirror Fourier transform spectrometer [24].
Fig. 2.
Fig. 2. Basic windowing principle to capture a hyperspectral data cube for a scene containing 3 x 3 spatial elements. The two-dimensional interferograms are stitched during post-processing.
Fig. 3.
Fig. 3. Schematic overview of the experimental setup including a light source, a moveable sample and a single-mirror Fourier transform spectrometer.
Fig. 4.
Fig. 4. Detector image acquired by the sIFTS, showing the TUM logo as well as superimposed interference fringes.
Fig. 5.
Fig. 5. Ray tracing simulation of the modulation transfer function with varying divergence angles $\Omega$ at a wavelength of 10.6 µm.
Fig. 6.
Fig. 6. Recorded image of a USAF 1951 test target at a divergence angle $\Omega$ of about 0.5°.
Fig. 7.
Fig. 7. Background spectrum of the sIFTS
Fig. 8.
Fig. 8. Shift of the sample along the x-direction of the detector array. Images taken at five consecutive instants of time. The sample contains three different materials arranged in a 3 x 3 pattern.
Fig. 9.
Fig. 9. (a) Two-dimensional interferograms of selected samples; (b) Corresponding one-dimensional interferograms obtained by averaging along the lines of equal OPD; (c) Transmission spectra compared to a laboratory FTIR spectrometer.

Tables (1)

Tables Icon

Table 1. Relevant dimensions of the USAF 1951 test target used for evaluating the spatial resolution of the sIFTS.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d s = d b s p m + T b s ( n a i r sin ( α ( 1 n a i r n b s ) ) 1 ( n a i r n b s sin ( α ) ) 2 )
I ( x , y ) = 0 L ( ν ~ ) D ( ν ~ ) { 1 + cos ( 2 π ν ~ O P D ( x , y ) ) } d ν ~
O P D ( x , y ) = x d s f F + O P D n l i n ( x , y )
Δ ν ~ = 1 O P D m a x ν ~ m a x N x
Ω = arctan ( d a 2 f 2 )