Abstract

A computational 3D imaging system is developed that enables polychromatic, depth-resolved, diffraction-limited imaging of semi-transparent objects. By combining coherent diffractive imaging (CDI) and optical coherence tomography (OCT), we reconstruct tomographic images of 3D objects from a set of wavelength- and phase-resolved diffraction patterns, using numerical methods to achieve image quality beyond the hardware limits of the optical systems used. We implement both time- and frequency-domain versions of full-field OCT systems, and for both versions we demonstrate fully lensless, as well as high-numerical-aperture configurations. We provide a comparison and overview of these different practical approaches to depth-resolved computational imaging. Furthermore, we demonstrate depth-resolved imaging of multilayer samples with an isotropic resolution in the $\mu$m range over a depth range that extends well beyond the depth-of-focus given by the numerical aperture of the imaging system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational optical coherence tomography [Invited]

Yuan-Zhi Liu, Fredrick A. South, Yang Xu, P. Scott Carney, and Stephen A. Boppart
Biomed. Opt. Express 8(3) 1549-1574 (2017)

Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

Adrian Bradu and Adrian Gh. Podoleanu
Biomed. Opt. Express 5(4) 1233-1249 (2014)

Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography

Yuuki Watanabe, Kazuhiko Yamada, and Manabu Sato
Opt. Express 14(12) 5201-5209 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Webb, Introduction to biomedical imaging (Wiley-IEEE Press, 2003).
  2. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  3. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [Crossref]
  4. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
  5. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
    [Crossref]
  6. R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
    [Crossref]
  7. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
    [Crossref]
  8. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  9. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref]
  10. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref]
  11. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [Crossref]
  12. Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography,” Biomed. Opt. Express 8(3), 1549–1574 (2017).
    [Crossref]
  13. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
    [Crossref]
  14. H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
    [Crossref]
  15. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref]
  16. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
    [Crossref]
  17. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [Crossref]
  18. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
    [Crossref]
  19. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref]
  20. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
    [Crossref]
  21. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  22. R. Bell, Introductory Fourier transform spectroscopy (Elsevier, 2012).
  23. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref]
  24. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
    [Crossref]
  25. D. W. E. Noom, D. E. Boonzajer Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22(25), 30504 (2014).
    [Crossref]
  26. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41(25), 5256–5262 (2002).
    [Crossref]
  27. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28(20), 1921–1923 (2003).
    [Crossref]
  28. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–75 (2004).
    [Crossref]
  29. E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
    [Crossref]
  30. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
    [Crossref]
  31. D. L. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
    [Crossref]
  32. J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
    [Crossref]
  33. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
    [Crossref]
  34. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [Crossref]
  35. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  36. A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Opt. Lett. 40(22), 5347–5350 (2015).
    [Crossref]
  37. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
    [Crossref]
  38. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref]
  39. S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17(14), 11335 (2009).
    [Crossref]
  40. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [Crossref]
  41. A. Weiner, Ultrafast optics, vol. 72 (John Wiley & Sons, 2011).
  42. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref]
  43. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref]

2017 (2)

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography,” Biomed. Opt. Express 8(3), 1549–1574 (2017).
[Crossref]

2015 (2)

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Opt. Lett. 40(22), 5347–5350 (2015).
[Crossref]

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

2014 (1)

2013 (1)

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

2009 (5)

2007 (2)

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (4)

2003 (5)

2002 (3)

2001 (1)

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

1999 (2)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

1998 (1)

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Akcay, A. C.

Akcay, C.

Anand, A.

Antoine, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Assayag, O.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Backman, V.

Baclayon, M.

Bailey, S. T.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

Beaurepaire, E.

Bell, R.

R. Bell, Introductory Fourier transform spectroscopy (Elsevier, 2012).

Blanchot, L.

Boccara, A. C.

Boccara, C.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

Bonin, T.

Boonzajer Flaes, D. E.

Boppart, S. A.

Bouma, B. E.

Burcheri, A.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Campbell, J. P.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Carney, P. S.

Cense, B.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chapman, H. N.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Chujo, W.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

Cooney, M. J.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Dalimier, E.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

de Boer, J. F.

de Poly, B. L. C.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Drexler, W.

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[Crossref]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–75 (2004).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).

Dubey, S.

Dubois, A.

Duker, J. S.

Eichenholz, J. M.

Eikema, K. S. E.

Federici, A.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Franke, G.

Fujimoto, J. G.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Gong, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Grieve, K.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

Groot, M. L.

Harms, F.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hermann, B.

Hillmann, D.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

Hofer, B.

Huang, D.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hüttmann, G.

Hwang, T. S.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Jia, Y.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Kim, M. K.

Kim, Y. L.

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Klancnik, J. M.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Ko, T. H.

Koch, P.

Kowalczyk, A.

Labordus, E.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lebec, M.

Lecaque, R.

Lee, M.

Leitgeb, R.

Li, X.

Liang, Y.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, B.

Liu, Y.

Liu, Y.-Z.

Lührs, C.

Mansvelder, H. D.

Marks, D. L.

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

D. L. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
[Crossref]

Matsushima, K.

Matz, G.

Mehta, D. S.

Miao, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Moneron, G.

Moore, S. C.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

Mu, G.

Nassif, N.

Nelson, J. S.

Noom, D. W. E.

Nugent, K. A.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Oldenburg, A. L.

Ozcan, A.

Park, B. H.

Parrein, P.

Peterman, E. J.

Pierce, M. C.

Považay, B.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref]

Reynolds, J. J.

Riben, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Rolland, J. P.

Saint-Jalmes, H.

Sampson, D. D.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Scott Carney, P.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Shakher, C.

Sheoran, G.

Shimobaba, T.

Sigal-Zafrani, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Smith, E. D. J.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

South, F. A.

Spaide, R. F.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Srinivasan, V. J.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tearney, G. J.

Toonen, R. F.

Tripathi, R.

Unterhuber, A.

Vabre, L.

Wada, N.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

Webb, A.

A. Webb, Introduction to biomedical imaging (Wiley-IEEE Press, 2003).

Weiner, A.

A. Weiner, Ultrafast optics, vol. 72 (John Wiley & Sons, 2011).

Wilson, D. J.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Witte, S.

Wojtkowski, M.

Xu, Y.

Yaglidere, O.

Yu, L.

Zhang, M.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Zhu, X.

Appl. Opt. (3)

Biomed. Opt. Express (2)

IEEE Photonics Technol. Lett. (1)

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13(1), 64–66 (2001).
[Crossref]

J. Biomed. Opt. (4)

D. L. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9(6), 1281–1287 (2004).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–152 (1999).
[Crossref]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–75 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

JAMA Ophthalmol. (1)

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Nat. Photonics (1)

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Opt. Express (8)

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[Crossref]

J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
[Crossref]

S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17(14), 11335 (2009).
[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
[Crossref]

D. W. E. Noom, D. E. Boonzajer Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22(25), 30504 (2014).
[Crossref]

Opt. Lett. (9)

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Opt. Lett. 40(22), 5347–5350 (2015).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002).
[Crossref]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[Crossref]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
[Crossref]

A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28(20), 1921–1923 (2003).
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref]

G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Sci. Rep. (1)

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Technol. Cancer Res. & Treat. (1)

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. L. C. de Poly, and C. Boccara, “Large field, high resolution full-field optical coherence tomography: A pre-clinical study of human breast tissue and cancer assessment,” Technol. Cancer Res. & Treat. 13, 455–468 (2013).
[Crossref]

Other (5)

A. Webb, Introduction to biomedical imaging (Wiley-IEEE Press, 2003).

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).

A. Weiner, Ultrafast optics, vol. 72 (John Wiley & Sons, 2011).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

R. Bell, Introductory Fourier transform spectroscopy (Elsevier, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the setup. LP700: 700 nm Long-pass filter, SP1000: 1000 nm short-pass filter, PBS: polarizing beamsplitter cube, AOTF: acousto-optic tunable filter, BS: beamsplitter cube, M: mirror, FM: flip mirror, BD: beam dump, L: lens, PH: pinhole. The setup has 4 different settings: low/high NA TDOCT and low/high NA SSOCT. The gray box contains the components for the high NA setting, consisting of an objective and a tube lens in the sample arm, and the dispersion compensation glass in the reference arm. (b) Schematic of a homemade 3-layer sample.
Fig. 2.
Fig. 2. Typical imaging results obtained with lensless OCT in different configurations.(a,b) Measurement and reconstruction of a USAF sample using the lensless TDOCT method. (c,d) Measurement and reconstruction of a USAF sample using the high-NA SSOCT method.
Fig. 3.
Fig. 3. A USAF sample measured by high-NA SSOCT method: (a) Resolved spectrum and final shaped spectrum. (b) Averaged phase (left axis) and extracted dispersion (right axis). (c) Axial response from the raw data, after spectral shaping and after dispersion compensation (final).
Fig. 4.
Fig. 4. Row 1: Measurement of a two-layer sample in the low-NA TDOCT configuration. Row 2: Measurement of a different two-layer sample with smaller features (in order to show the improved transverse resolution) in the high-NA TDOCT configuration. (a) A raw camera frame from the stack of polychromatic interferogram measurements. (b,c) Reconstructed tomograms of the top and bottom layers of the sample. (d) Optical microscope image (5x, 0.13 NA) of the sample. The scale bar specifies the transverse dimension of the two-layer sample. The axial separation of the two layers is 26 $\mu m$ . (e) A raw camera frame from the stack of polychromatic interferogram measurements. (f,g) Reconstructed tomograms of the top and bottom layers of the sample. (h) Optical microscope image (10x, 0.25 NA) of the sample. The scale bar specifies the transverse dimension of the two-layer sample. The axial separation of the two layers is 28 $\mu m$ .
Fig. 5.
Fig. 5. (a) A single camera frame taken from a high-NA SSOCT measurement series. (b) Resolved depth distribution of the three-layer sample. (c, g) Optical microscope image (10x, 0.25 NA ) of the three-layer sample from the front and back sides. The scale bar specifies the transverse dimension of the three-layer sample. The separation between adjacent layers is 15  $\mu$ m. The 3D rendering of the sample is shown in Fig. 1(b). Reconstructed tomograms of the three layers of the sample with (d-f) and without (h-j) numerical refocusing for each individual layer.
Fig. 6.
Fig. 6. Experimentally determined depth distribution of the three-layer sample measured with (a) high-NA TDOCT and (b) high-NA SSOCT on a logarithmic scale. (c,d) Simulated depth response with 30% noise added, and without noise on a two-layer object.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = E o ( ω ) e i φ o ( ω ) + E r ( ω ) e i ( φ r ( ω ) + ω t ) 2 d ω ,
I ( t ) = [ E o 2 + E r 2 + E o ( ω ) E r ( ω ) e i ( Δ φ ( ω ) ω t ) + E o ( ω ) E r ( ω ) e i ( Δ φ ( ω ) ω t ) ] d ω ,
I ( ω ) = F t { I ( t ) } = I ¯ δ ( 0 ) + E o ( ω ) E r ( ω ) e i Δ φ ( ω ) + E o ( ω ) E r ( ω ) e i Δ φ ( ω ) .
I + 1 ( ω , x , y ) = E o ( ω , x , y ) E r ( ω , x , y ) e i Δ φ ( ω , x , y ) .
E o ( ω , x 0 , y 0 ) = P { E o ( ω , x , y ) E r ( ω , x , y ) e i Δ φ ( ω , x , y ) } .
E o ( t , x 0 , y 0 ) = F ω 1 { E o ( ω , x 0 , y 0 ) } .
I ( ω ) = E o ( ω ) + E r ( ω ) e i ω t z 2 ,
I ( t ) = F t { I ( ω ) } = I ¯ δ ( 0 ) + F t { E o ( ω ) E r ( ω ) } δ ( t t z ) + F t { E o ( ω ) E r ( ω ) } δ ( t + t z ) .
Δ φ ( ω ) = φ ( ω 0 ) + d Δ φ d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 Δ φ d ω 2 | ω 0 ( ω ω 0 ) 2 +   ,