Abstract

We present a reconfigurable terahertz (THz) resonator using double C-shape metamaterials (DCM) that can be used as filter and single-/dual-resonance switch. By changing the position of the C-shape metamaterial along x-axis and y-axis directions, the resonances can be modulated from single-resonance to dual-resonance in TE mode and the corresponding free spectrum range (FSR) can be changed from 0.19 THz to 0.09 THz. These results indicate the proposed DCM can be used as a single-/dual-resonance switch and polarization switch. To increase the tunability, flexibility, and applicability of DCM, the resonant frequency could be tuned by changing the gap between DCM with the dual-layer. The resonances are blue-shifted 0.04 THz from 0.22 THz to 0.26 THz (1st resonance) and 0.11 THz from 0.36 THz to 0.47 THz (2nd resonance) in TE mode. The relationship of resonance and gap variation is quite stable and linear. This design of DCM provides a potential possibility of feasible opto-electronics applications in the THz frequency range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs)

Dongyuan Yao, Kanghong Yan, Xiaoyan Liu, Shaoquan Liao, Yangbin Yu, and Yu-Sheng Lin
OSA Continuum 1(2) 349-357 (2018)

Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic

Zefeng Xu, Zhicheng Lin, Shaojun Cheng, and Yu-Sheng Lin
Opt. Lett. 44(16) 3944-3947 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  3. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
    [Crossref]
  4. W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
    [Crossref]
  5. K. Kishor, M. N. Baitha, R. K. Sinha, and B. Lahiri, “Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization,” J. Opt. Soc. Am. B 31(7), 1410–1414 (2014).
    [Crossref]
  6. G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
    [Crossref]
  7. A. Andrei and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
    [Crossref]
  8. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  9. S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
    [Crossref]
  10. Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
    [Crossref]
  11. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
    [Crossref]
  12. B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).
  13. X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
    [Crossref]
  14. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref]
  15. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  16. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  17. Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  18. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  19. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  20. D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
    [Crossref]
  21. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref]
  22. K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
    [Crossref]
  23. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref]
  24. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
    [Crossref]
  25. E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
    [Crossref]
  26. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
    [Crossref]
  27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref]
  28. Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
    [Crossref]
  29. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  30. R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
    [Crossref]
  31. R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
    [Crossref]
  32. L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
    [Crossref]
  33. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
    [Crossref]
  34. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
    [Crossref]
  35. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref]
  36. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
    [Crossref]
  37. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  38. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
    [Crossref]

2019 (3)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

2018 (4)

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
[Crossref]

2017 (2)

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

2016 (1)

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

2015 (2)

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

2014 (5)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

K. Kishor, M. N. Baitha, R. K. Sinha, and B. Lahiri, “Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization,” J. Opt. Soc. Am. B 31(7), 1410–1414 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

2013 (2)

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

A. Andrei and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
[Crossref]

2012 (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

2011 (4)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
[Crossref]

2010 (2)

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

2008 (3)

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
[Crossref]

2007 (2)

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Adamo, G.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Agrawal, K. K.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Akosman, A. E.

Alchtar, M. J.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Andrei, A.

Arezoomandan, S.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Baitha, M. N.

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Basov, D. N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Bian, Y.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Brener, I.

Brolo, A. G.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Brown, E. R.

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cao, W. Q.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Chae, B. G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chanana, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Chen, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Cheng, Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Chu, Q.

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Cortecchia, D.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Cui, T. J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Damodaran, A. R.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Fang, G.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Feng, Y.

Feng, Y. J.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gholipour, B.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gopalan, P.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Govind, G.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Grinberg, I.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Guo, D. S.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Han, J.

Han, Z. Y.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Hao, J.

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

He, Q.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hong, K. Y.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Huang, C.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Huang, C. Y.

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Jiang, R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Jiang, T.

Jiang, T. A.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Jiang, W. X.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Jokerst, N. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Jung, H. S.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Karthik, J.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Kim, H. T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kishor, K.

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Krishnamoorthy, H. N. S.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Lahiri, B.

Lavrinenko, A. V.

Lee, C.

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Li, C.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Li, H.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Liao, S.

Lin, Y. S.

D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Liu, A. J.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Liu, Q.

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Liu, S.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Liu, X.

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Martin, L. W.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Menezes, J. W.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Mutlu, M.

Nahata, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

O’Hara, J. F.

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Ozbay, E.

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Palit, S.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Qi, L.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Qi, M. Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Rappe, A. M.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rodriguez, B. S.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Serebryannikov, A. E.

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Singh, R.

Sinha, R. K.

Smirnova, E.

Smith, D. R.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Soci, C.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Soukolis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Sun, W.

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Taylor, A. J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Tian, K.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Tiwari, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Tiwari, N. K.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Wei, M.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Wei, Y.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wu, C.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Wu, Z. R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Xu, R.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Yan, K.

Yao, D.

Yin, J.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Yu, T. B.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Yu, Y.

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zett, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhai, J.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Zhang, B. N.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, W.

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Zhang, Y.

Zhao, J.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Zhao, J. M.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Zheludev, N. I.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Zhou, L.

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, B.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Adv. Opt. Mater. (1)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (5)

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chin. Phys. B (1)

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett (1)

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

IEEE Photonics J. (1)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

IEEE Sens. J. (1)

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Int. J. Electromagn. Appl. (1)

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

J. Appl. Phys. (1)

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (2)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Nano Lett. (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Nat. Mater. (1)

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

New J. Phys. (1)

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

OSA Continuum (1)

Phys. Rev. B (1)

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Plasmonics (1)

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Other (1)

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic drawings of proposed dual-layer DCM device. (b) The denotations of dual-layer DCM unit cell.
Fig. 2.
Fig. 2. Transmission spectra of single-layer DCM with different x value at (a) TE mode and (b) TM mode.
Fig. 3.
Fig. 3. E-field and H-field distributions of single-layer DCM with different x value at TE mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.306 THz). (c) x = 30 µm (f = 0.494 THz). (d) x = 40 µm (f = 0.369 THz). (e) x = 60 µm (f = 0.236 THz). (f) x = 60 µm (f = 0.602 THz). (f is monitored frequency.)
Fig. 4.
Fig. 4. E-field and H-field distributions of single-layer DCM with different x value at TM mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.233 THz). (c) x = 40 µm (f = 0.219 THz). (d) x = 60 µm (f = 0.178 THz). (f is monitored frequency.)
Fig. 5.
Fig. 5. Transmission spectra of single-layer DCM with different y value at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and y value of (a) and (b), respectively.
Fig. 6.
Fig. 6. E-field and H-field distributions of single-layer DCM with different y value at TE mode. (a) y = 0 µm (f = 0.306 THz). (b) y = 0 µm (f = 0.494 THz). (c) y = 5 µm (f = 0.306 THz). (d) y = 5 µm (f = 0.448 THz). (e) y = 10 µm (f = 0.311 THz). (f) y = 10 µm (f = 0.430 THz). (g) y = 15 µm (f = 0.323 THz). (h) y = 15 µm (f = 0.419 THz). (f is monitored frequency.)
Fig. 7.
Fig. 7. E-field and H-field distributions of single-layer DCM with different y value at TM mode. (a) y = 0 µm (f = 0.233 THz). (b) y = 5 µm (f = 0.227 THz). (c) y = 10 µm (f = 0.215 THz). (d) y = 15 µm (f = 0.196 THz). (f is monitored frequency.)
Fig. 8.
Fig. 8. Transmission spectra of DCM with different Au width (w) at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and w parameter of (a) and (b), respectively.
Fig. 9.
Fig. 9. E-field and H-field distributions of DCM with single-layer at TE mode at the condition of (a) w = 5 µm (f = 0.236 THz), (b) w = 5 µm (f = 0.602 THz), (c) w = 7.5 µm (f = 0.274 THz), (d) w = 7.5 µm (f = 0.680 THz), (e) w = 10 µm (f = 0.303 THz), and (f) w = 10 µm (f = 0.750 THz), respectively. (f is monitored frequency.)
Fig. 10.
Fig. 10. E-field and H-field distributions of DCM with single-layer at TM mode at the condition of (a) w = 5 µm (f = 0.178 THz), (b) w = 7.5 µm (f = 0.195 THz), and (c) w = 10 µm (f = 0.213 THz), respectively. (f is monitored frequency.)
Fig. 11.
Fig. 11. (a) Transmission spectra of DCM with dual-layer by changing g value at TE mode. (b) is the corresponding relationships of resonances and g value.

Metrics