Abstract

A misaligned optical carrier (MOC) polarization division multiplexing single-sideband optical orthogonal frequency division multiplexing (PDM-SSB-OOFDM) scheme with a single balanced detection-based beat interference cancellation receiver (BICR) is proposed for transmitting two SSB-OOFDM signals. In this PDM-SSB-OOFDM system, the signal-signal beat interference (SSBI) is eliminated and the receiver is simplified. Since the receiver is implemented by only one BICR without polarization beam splitting and complicated MIMO processing, the system is not sensitive to polarization mode dispersion (PMD) and is easy to implement. The proposed MOC PDM-SSB-OOFDM scheme is demonstrated by the simulation, and two 40 Gb/s 16-ary quadrature amplitude modulation (16-QAM) signals are transmitted over a 120 km standard single mode fiber (SSMF) with an error vector magnitude (EVM) below 16.3%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct detection of polarization multiplexed single sideband signals with orthogonal offset carriers

Yixiao Zhu, Mingxuan Jiang, and Fan Zhang
Opt. Express 26(12) 15887-15898 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
    [Crossref]
  2. X. Zhang, C. Zhang, C. Chen, W. Jin, and K. Qiu, “Non-optical carrier SSB-OFDM PONs with the improved receiver sensitivity and potential transmission nonlinearity tolerance,” IEEE Photonics J. 9(1), 1–10 (2017).
    [Crossref]
  3. I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
    [Crossref]
  4. W. Zhang, C. Zhang, C. Chen, and K. Qiu, “Experimental demonstration of security-enhanced OFDMA-PON using chaotic constellation transformation and pilot-aided secure key agreement,” J. Lightwave Technol. 35(9), 1524–1530 (2017).
    [Crossref]
  5. X. Zhang, Z. Li, C. Li, M. Luo, H. Li, C. Li, Q. Yang, and S. Yu, “Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode,” Opt. Express 22(10), 12079–12086 (2014).
    [Crossref]
  6. Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
    [Crossref]
  7. X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
    [Crossref]
  8. S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.
  9. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  10. D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
    [Crossref]
  11. J. Lowery A and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [Crossref]
  12. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
    [Crossref]
  13. W.-R. Peng, X. Wu, K.-M. Feng, V. R. Arbab, B. Shamee, J.-Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref]
  14. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  15. Z. Li, M. Sezer Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]
  16. J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
    [Crossref]
  17. Y. Zhang and J. Ma, “A new beat interference cancellation receiver with 3× 3 optical coupler for the SSB-OOFDM signal with reduced guard band,” Opt. Commun. 367, 279–285 (2016).
    [Crossref]
  18. X. Fang, Y. Xu, Z. Chen, and F. Zhang, “Time-domain least square channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems,” J. Lightwave Technol. 34(3), 891–900 (2016).
    [Crossref]
  19. X. Fang, Y. Xu, Z. Chen, and F. Zhang, “Frequency-domain channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems,” J. Lightwave Technol. 33(13), 2743–2750 (2015).
    [Crossref]
  20. H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 65.1-Gb/s Coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
    [Crossref]
  21. K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.
  22. K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.
  23. K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.
  24. R Dischler and F Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” National Fiber Optic Engineers Conference. Optical Society of America, 2009: PDPC2.
  25. H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.
  26. C. Y. Wang, C. C. Wei, C. T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett. 37(24), 5070–5072 (2012).
    [Crossref]
  27. F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
    [Crossref]
  28. P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
    [Crossref]

2018 (5)

C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
[Crossref]

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
[Crossref]

2017 (3)

2016 (5)

2015 (1)

2014 (1)

2013 (2)

2012 (1)

2010 (1)

2009 (2)

2006 (1)

Al Amin, A.

Antonelli, C.

Arbab, V. R.

Armstrong, J.

Bayvel, P.

Buchali, F

R Dischler and F Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” National Fiber Optic Engineers Conference. Optical Society of America, 2009: PDPC2.

Cao, Z.

Chandrasekhar, S.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.

Chang, H. Y.

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Che, D.

Chen, C.

Chen, L.

Chen, Z.

Chi, S.

Chicharro, F. I.

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Christen, L. C.

Dischler, R

R Dischler and F Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” National Fiber Optic Engineers Conference. Optical Society of America, 2009: PDPC2.

Dong, Z.

Fang, X.

Feng, K.-M.

Feng, Z.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Fu, S.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Galdino, L.

He, X.

Hu, Q.

Huang, H. T.

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Huo, J

K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.

Jansen, S. L.

Jin, W.

X. Zhang, C. Zhang, C. Chen, W. Jin, and K. Qiu, “Non-optical carrier SSB-OFDM PONs with the improved receiver sensitivity and potential transmission nonlinearity tolerance,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Killey, R. I.

Li, C.

Li, F.

Li, H.

Li, P.

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

Li, X.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

Li, Z.

Lin, C. T.

C. Y. Wang, C. C. Wei, C. T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett. 37(24), 5070–5072 (2012).
[Crossref]

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Liu, D.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Liu, W.

K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.

Liu, X.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.

Lowery A, J.

Luo, M.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

X. Zhang, Z. Li, C. Li, M. Luo, H. Li, C. Li, Q. Yang, and S. Yu, “Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode,” Opt. Express 22(10), 12079–12086 (2014).
[Crossref]

Ma, J.

P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
[Crossref]

Y. Zhang and J. Ma, “A new beat interference cancellation receiver with 3× 3 optical coupler for the SSB-OOFDM signal with reduced guard band,” Opt. Commun. 367, 279–285 (2016).
[Crossref]

J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
[Crossref]

Ma, X.

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

Mecozzi, A.

Mora, J.

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Morita, I.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 65.1-Gb/s Coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
[Crossref]

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.

Ng’oma, A

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Ortega, B.

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Peckham, D. W

S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.

Peng, W.-R.

Qiu, K.

Sekkiou, I.

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Sezer Erkilinç, M.

Shamee, B.

Shi, K.

Shieh, W.

Shtaif, M.

Sillekens, E.

Sun, C. S.

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Takahashi, H.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 65.1-Gb/s Coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
[Crossref]

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.

Takeshima, K.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.

Tanaka, H

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.

Tanaka, H.

Tang, M.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Thomsen, B. C.

Wang, C. Y.

Wei, C. C.

C. Y. Wang, C. C. Wei, C. T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett. 37(24), 5070–5072 (2012).
[Crossref]

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Willner, A. E.

Wu, Q.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Wu, X.

Xu, Y.

Yan, K.

K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.

Yang, J.-Y.

Yang, P.

P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
[Crossref]

Yang, Q.

Yao, X.

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

Yu, S.

Zeng, W. S.

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Zhang, C.

Zhang, F.

Zhang, H.

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

Zhang, J.

P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
[Crossref]

Zhang, W.

Zhang, X.

X. Zhang, C. Zhang, C. Chen, W. Jin, and K. Qiu, “Non-optical carrier SSB-OFDM PONs with the improved receiver sensitivity and potential transmission nonlinearity tolerance,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

X. Zhang, Z. Li, C. Li, M. Luo, H. Li, C. Li, Q. Yang, and S. Yu, “Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode,” Opt. Express 22(10), 12079–12086 (2014).
[Crossref]

Zhang, Y.

Y. Zhang and J. Ma, “A new beat interference cancellation receiver with 3× 3 optical coupler for the SSB-OOFDM signal with reduced guard band,” Opt. Commun. 367, 279–285 (2016).
[Crossref]

Zhou, H.

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Zhou, X.

K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.

Zhu, B.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.

Zhu, Y.

Zou, K.

IEEE Photonics J. (1)

X. Zhang, C. Zhang, C. Chen, W. Jin, and K. Qiu, “Non-optical carrier SSB-OFDM PONs with the improved receiver sensitivity and potential transmission nonlinearity tolerance,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

J. Lightwave Technol. (9)

W. Zhang, C. Zhang, C. Chen, and K. Qiu, “Experimental demonstration of security-enhanced OFDMA-PON using chaotic constellation transformation and pilot-aided secure key agreement,” J. Lightwave Technol. 35(9), 1524–1530 (2017).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
[Crossref]

Z. Li, M. Sezer Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
[Crossref]

C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
[Crossref]

X. Fang, Y. Xu, Z. Chen, and F. Zhang, “Time-domain least square channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems,” J. Lightwave Technol. 34(3), 891–900 (2016).
[Crossref]

X. Fang, Y. Xu, Z. Chen, and F. Zhang, “Frequency-domain channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems,” J. Lightwave Technol. 33(13), 2743–2750 (2015).
[Crossref]

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 65.1-Gb/s Coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
[Crossref]

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

Opt. Commun. (3)

P. Yang, J. Ma, and J. Zhang, “A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers,” Opt. Commun. 416, 137–144 (2018).
[Crossref]

Y. Zhang and J. Ma, “A new beat interference cancellation receiver with 3× 3 optical coupler for the SSB-OOFDM signal with reduced guard band,” Opt. Commun. 367, 279–285 (2016).
[Crossref]

X. Ma, P. Li, X. Yao, and H. Zhang, “Novel transmitter IQ imbalance compensation algorithm using training symbols in PDM CO-OFDM system,” Opt. Commun. 426, 607–611 (2018).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

I. Sekkiou, F. I. Chicharro, B. Ortega, and J. Mora, “Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs,” Opt. Fiber Technol. 45, 98–105 (2018).
[Crossref]

Opt. Lett. (3)

Optica (1)

Sci. Rep. (1)

Q. Wu, Z. Feng, M. Tang, X. Li, M. Luo, H. Zhou, S. Fu, and D. Liu, “Digital Domain Power Division Multiplexed Dual Polarization Coherent Optical OFDM Transmission,” Sci. Rep. 8(1), 15827 (2018).
[Crossref]

Other (6)

S. Chandrasekhar, X. Liu, B. Zhu, and D. W Peckham, (2009). “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” In 2009 35th European Conference on Optical Communication (Vol. 2009, pp. 1–2). IEEE.

K. Yan, X. Zhou, W. Liu, and J Huo, (2016). “PDM-DD-SSB-OFDM system based on a single-end PD for short reach communications,” In Asia Communications and Photonics Conference (pp. AF2A-96). Optical Society of America.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2011). “Polarization demultiplexing using linearly interpolated channel matrix in PDM systems with MIMO processing,” In 16th Opto-Electronics and Communications Conference (pp. 419–420). IEEE.

K. Takeshima, H. Takahashi, I. Morita, and H Tanaka, (2010). “Experimental evaluation of tolerable polarization change in PDM-OFDM systems with training symbols,” In Asia Communications and Photonics Conference and Exhibition(pp. 3–4). IEEE.

R Dischler and F Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” National Fiber Optic Engineers Conference. Optical Society of America, 2009: PDPC2.

H. T. Huang, C. S. Sun, C. T. Lin, C. C. Wei, W. S. Zeng, H. Y. Chang, and A Ng’oma, (2015). “Direct-detection PDM-OFDM RoF system for 60-GHz wireless MIMO transmission without polarization tracking,” In Optical Fiber Communication Conference (pp. W3F-2). Optical Society of America.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. the simulated link diagram of our proposed MOC PDM-SSB-OOFDM scheme. LD, laser diode; MZM: Mach-Zehnder modulator; IL: interleaver; PC: Polarization control; OFDM Modulator: orthogonal frequency division multiplexing modulator; I/Q mod: I/Q modulator; OBPF: optical band-pass filter; PBC: polarization beam combiner; SSMF: standard single mode fiber; EDFA: erbium-doped fiber amplifier; VOA: variable optical Attenuator; OC: optical coupler; PD: photodiode.
Fig. 2.
Fig. 2. Simulation link diagram of the MOC PDM-SSB-OOFDM scheme with WG2 of 1 GHz. The 7 illustrations in the lower part of the Fig. 2 are the spectra of different locations of MOC. The illustrations (a) and (b) represent the spectrum of the RF-OFDM signal at the X and Y polarization directions of the transmitting end, respectively; (c) represent Optical carrier spectrum generated by CW LD; (d) and (e) represent SSB-OOFDM signal and Optical carrier spectrum at the X and Y polarization directions; (f) represents the spectrum of the optical signal transmitted in the fiber; (g) represents the spectrum of the RF-OFDM signal after BICR.
Fig. 3.
Fig. 3. (a) EVMs of X-Polarization direction and Y-Polarization direction versus CSPR in this scheme at the GB of 1 GHz. 16.3% is the forward error correction (FEC) limit. (b) EVMs versus transmission distance of MOC PDM-SSB-OOFDM signal at the GB of 1 GHz when CSPR is equal to 0 dB.
Fig. 4.
Fig. 4. (a) EVMs of X-Polarization direction versus the WG1 when transmission distance of MOC PDM-SSB-OOFDM signal is 30km. (b) EVM versus the WG2 at GB of 1 GHz when transmission distance of MOC PDM-SSB-OOFDM signal is 30km.
Fig. 5.
Fig. 5. EVM versus the optical launch power of MOC PDM-SSB-OOFDM signal at GB of 1 GHz in case of different transmission distance of 0km, 30km, 60km, and 90km,120km.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S k ( t ) = i = 0 i = [ n = N 2 n = N 2 1 C n i k Π ( t i T ) exp ( j 2 π f n t ) ]
Π ( t ) = { 1 , 0 < t <= T 0 , o t h e r w i s e
E O U T X ( t ) = α 2 E i n X ( t ) { exp [ j π V 1 X ( t ) + V b i a s 1 V π ] + exp [ j π V 1 X ( t ) + V b i a s 2 V π ] }
V 1 X ( t ) = Re [ S X ( t ) ] V R F cos ( 2 π f R F X t ) Im [ S X ( t ) ] V R F sin ( 2 π f R F X t ) = V m a X ( t ) cos ( 2 π f R F X t + φ X ( t ) )
E O U T X ( t ) α 2 E c { [ 1 exp ( j π Δ V π ) ] J 0 ( m h X a X ( t ) ) exp [ j 2 π f C X t ] + [ 1 + exp ( j π Δ V π ) ] j J 1 ( m h X a X ( t ) ) exp [ j ( 2 π ( f C X + f R F X ) t + φ X ( t ) ) ] + [ 1 + exp ( j π Δ V π ) ] j J 1 ( m h X a X ( t ) ) exp [ j ( 2 π ( f C X f R F X ) t φ X ( t ) ) ] } α 2 E c { ( j π Δ V π ) exp [ j 2 π f C X t ] + j m h X a X ( t ) exp [ j ( 2 π ( f C X + f R F X ) t + φ X ( t ) ) ] + j m h X a X ( t ) exp [ j ( 2 π ( f C X f R F X ) t φ X ( t ) ) ] }
E X ( t ) = α 2 E C { j π Δ V π exp [ j 2 π f C X t ] + j π V m V π a X ( t ) exp [ j ( 2 π ( f C X + f R F X ) t + φ X ( t ) ) ] } = E C X ( t ) + E S X ( t )
E Y ( t ) = α 2 E C { j π Δ V π exp [ j 2 π f C Y t ] + j π V m V π a Y ( t ) exp [ j ( 2 π ( f C Y + f R F Y ) t + φ Y ( t ) ) ] } = E C Y ( t ) + E S Y ( t )
E ( t ) = e ^ x E X ( t ) + e ^ y E Y ( t ) = ( e ^ x e ^ y ) ( E X ( t ) E Y ( t ) ) = ( e ^ x e ^ y ) ( E C X ( t ) + E S X ( t ) E C Y ( t ) + E S Y ( t ) )
T = 1 2 [ 1 j j 1 ]
[ E 1 ( t ) E 2 ( t ) ] = T [ E C ( t ) E S ( t ) ] = 1 2 [ 1 j j 1 ] [ e ^ x E C X ( t ) + e ^ y E C Y ( t ) e ^ x E S X ( t ) + e ^ y E S Y ( t ) ] = 1 2 [ e ^ x [ E C X ( t ) + j E S X ( t ) ] + e ^ y [ E C Y ( t ) + j E S Y ( t ) ] e ^ x [ j E C X ( t ) + E S X ( t ) ] + e ^ y [ j E C Y ( t ) + E S Y ( t ) ] ]
[ I 1 ( t ) I 2 ( t ) ] = μ [ | E 1 ( t ) | 2 | E 2 ( t ) | 2 ] = μ 2 [ | E C X ( t ) | 2 + | E S X ( t ) | 2 + j [ E S X ( t ) E C X ( t ) E S X ( t ) E C X ( t ) ] + | E C Y ( t ) | 2 + | E S Y ( t ) | 2 + j [ E S Y ( t ) E C Y ( t ) E S Y ( t ) E C Y ( t ) ] | E C X ( t ) | 2 + | E S X ( t ) | 2 j [ E S X ( t ) E C X ( t ) E S X ( t ) E C X ( t ) ] + | E C Y ( t ) | 2 + | E S Y ( t ) | 2 j [ E S Y ( t ) E C Y ( t ) E S Y ( t ) E C Y ( t ) ] ]
I O U T ( t ) = I 1 ( t ) I 2 ( t ) = j μ [ E S X ( t ) E C X ( t ) E S X ( t ) E C X ( t ) + E S Y ( t ) E C Y ( t ) E S Y ( t ) E C Y ( t ) ] = 2 μ Im { E C X ( t ) E S X ( t )  +  E C Y ( t ) E S Y ( t ) } = μ α 2 π 2 E C 2 Δ V m 2 V π 2 Im { a X ( t ) exp [ j ( 2 π f R F X t + φ X ( t ) ) ] + a Y ( t ) exp [ j ( 2 π f R F Y t + φ Y ( t ) ) ] }