Abstract

Chip-integrated nonlinear photonics holds the key for advanced optical information processing with superior performance and novel functionalities. Here, we present an optimally mode-matched, periodically poled lithium niobate nanowaveguide for efficient parametric frequency conversions on chip. Using a 4-mm nanowaveguide with subwavelength mode confinement, we demonstrate second harmonic generation with efficiency over $2200\%~W^{-1}cm^{-2}$, and broadband difference frequency generation over a 4.3-THz spectral span. These allow us to generate correlated photon pairs over multiple frequency channels via spontaneous parametric down conversion, all in their fundamental spatial modes, with a coincidence to accidental ratio as high as 600. The high efficiency and dense integrability of the present chip devices may pave a viable route to scalable nonlinear applications in both classical and quantum domains.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator

Rui Luo, Haowei Jiang, Steven Rogers, Hanxiao Liang, Yang He, and Qiang Lin
Opt. Express 25(20) 24531-24539 (2017)

Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide

Rui Luo, Yang He, Hanxiao Liang, Mingxiao Li, and Qiang Lin
Optica 5(8) 1006-1011 (2018)

Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2

Ashutosh Rao, Kamal Abdelsalam, Tracy Sjaardema, Amirmahdi Honardoost, Guillermo F. Camacho-Gonzalez, and Sasan Fathpour
Opt. Express 27(18) 25920-25930 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
    [Crossref]
  2. L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
    [Crossref]
  3. H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
    [Crossref]
  4. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
    [Crossref]
  5. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref]
  6. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref]
  7. A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
    [Crossref]
  8. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  9. A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).
  10. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  11. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  12. L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
    [Crossref]
  13. J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
    [Crossref]
  14. J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
    [Crossref]
  15. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
    [Crossref]
  16. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
    [Crossref]
  17. S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
    [Crossref]
  18. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
    [Crossref]
  19. F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).
  20. X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).
  21. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
    [Crossref]
  22. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
    [Crossref]
  23. T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
    [Crossref]
  24. S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photonics 2(4), 046103 (2017).
    [Crossref]
  25. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
    [Crossref]
  26. Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
    [Crossref]
  27. D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
    [Crossref]
  28. J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.
  29. S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54(6), 1–16 (2018).
    [Crossref]
  30. T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
    [Crossref]
  31. M. Reich, F. Korte, C. Fallnich, H. Welling, and A. Tünnermann, “Electrode geometries for periodic poling of ferroelectric materials,” Opt. Lett. 23(23), 1817–1819 (1998).
    [Crossref]
  32. J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SF2I.2.
  33. C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.
  34. M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).
  35. D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
    [Crossref]
  36. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
    [Crossref]
  37. Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
    [Crossref]
  38. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
    [Crossref]
  39. U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).
  40. A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
    [Crossref]
  41. M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
    [Crossref]
  42. M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
    [Crossref]
  43. A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
    [Crossref]
  44. C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
    [Crossref]
  45. E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
    [Crossref]
  46. M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44(5), 1265–1268 (2019).
    [Crossref]

2019 (3)

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44(5), 1265–1268 (2019).
[Crossref]

2018 (13)

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54(6), 1–16 (2018).
[Crossref]

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
[Crossref]

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

2017 (9)

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photonics 2(4), 046103 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

2016 (5)

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

2014 (1)

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

2013 (2)

2012 (1)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

2009 (1)

C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
[Crossref]

2004 (1)

A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
[Crossref]

2002 (1)

1998 (1)

Aghaeimeibodi, S.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Aguilar, G. H.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Aktas, D.

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Alibart, O.

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Amanti, M.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Anant, V.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Atikian, H. A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Auchter, S.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Autebert, C.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Awschalom, D. D.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

Baboux, F.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Belhassen, J.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bhaskar, M. K.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Bielejec, E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Boes, A.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Borregaard, J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Bowers, J. E.

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Bracker, A. S.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Brown, R. C.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Burek, M. J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Buyukkaya, M. A.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Byrnes, T.

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

Camacho, R. M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Carlson, D. R.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chang, L.

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Chen, B.-Q.

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

Chen, H.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Chen, J.-Y.

M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44(5), 1265–1268 (2019).
[Crossref]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chiles, J.

Coudreau, T.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Cui, L.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Dao, D. V.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Delfyett, P.

Desiatov, B.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

Diddams, S. A.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Dowling, J. P.

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

Ducci, S.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Eigner, C.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Elkouss, D.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Englund, D.

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photonics 2(4), 046103 (2017).
[Crossref]

Evans, R. E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Fallnich, C.

Fan, H.

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

Fathpour, S.

Fejer, M. M.

Fortier, T. M.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Fox, R. W.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Fujimura, M.

Gaeta, A. L.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

Gainutdinov, R. V.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

Gammon, D.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Gisin, N.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Goggin, M.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Grimau Puigibert, M.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Guerreiro, T.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Hanson, R.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

Haylock, B.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

He, Y.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Herrmann, H.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Hickstein, D. D.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Ho, C.

C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
[Crossref]

Höfling, S.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Honardoost, A.

Hong, L.-H.

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

Hu, C.-Y.

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

Huang, Y.-P.

M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44(5), 1265–1268 (2019).
[Crossref]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Huntington, E. H.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Ilo-Okeke, E. O.

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

Jankowski, M.

Janousek, J.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Jelezko, F.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Jiang, H.

Jin, M.

Kaiser, F.

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Kalashnikov, D. A.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Kamp, M.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Karasahin, A.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Kasture, S.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Kauten, T.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Khan, S.

Kim, J.-H.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Knoerzer, M.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Korte, F.

Krivitsky, L. A.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Kulik, S. P.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Kurtsiefer, C.

C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
[Crossref]

Kurz, J. R.

Kwiat, P.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Laiho, K.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Lam, P. K.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Lamas-Linares, A.

C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
[Crossref]

Langrock, C.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Leavitt, R. P.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Lee, C.-M.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Lemaître, A.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Lenzini, F.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Leopardi, H.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

Li, Q.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Li, Y.

Li, Z.

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Li, Z.-Y.

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

Lind, A.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Ling, J.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

Liscidini, M.

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

Lobino, M.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Loncar, M.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

Lu, X.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Ludlow, A. D.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Lukin, M. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Luo, K. H.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, “On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator,” Opt. Express 25(20), 24531–24539 (2017).
[Crossref]

Ma, J.

Ma, Z.

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Malinowski, M.

Maltese, G.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Marandi, A.

Marsili, F.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Martin, A.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Meuwly, C.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Milman, P.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Minneci, A.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

Mitchell, A.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Moille, G.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Mouradian, S. L.

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photonics 2(4), 046103 (2017).
[Crossref]

Nagy, J. T.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SF2I.2.

Nam, S. W.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Nguyen, C. T.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Nguyen, T. G.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Oblak, D.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Okawachi, Y.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

Olson, J. B.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Pacheco, J. L.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Papp, S. B.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Parameswaran, K. R.

Park, H.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Paterova, A. V.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Paudel, U.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Pelc, J. S.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Peters, J.

Peters, J. D.

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

Phan, H.-P.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Pressl, B.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Prilmüller, M.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Quiring, V.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Rabiei, P.

Rao, A.

Reano, R. M.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SF2I.2.

Reich, M.

Richardson, C. J. K.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Ricken, R.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Rogers, S.

Roussev, R. V.

Route, R. K.

Sangouard, N.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Sanguinetti, B.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Sansoni, L.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
[Crossref]

Schlager, A.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Schneider, C.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Shahverdi, A.

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Shaw, M. D.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Shih, Y.

A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
[Crossref]

Silberhorn, C.

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Singh, A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Sipahigil, A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

Srinivasan, K.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Steel, D.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Sua, Y. M.

M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, “High-extinction electro-optic modulation on lithium niobate thin film,” Opt. Lett. 44(5), 1265–1268 (2019).
[Crossref]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, H. Fan, and Y.-P. Huang, “Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics,” OSA Continuum 1(1), 229–242 (2018).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Suchomel, H.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Sukachev, D. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Talukder, J. R.

Tang, C.

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

Tanzilli, S.

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Tessler, L.

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

Thearle, O.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Thew, R. T.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Tittel, W.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Tumeh, L.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

Tünnermann, A.

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
[Crossref]

Vergyris, P.

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

Verma, V. B.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Villa, M.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Volet, N.

Volk, T. R.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

Waks, E.

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

Wang, C.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wang, L.

Wehner, S.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Weihs, G.

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

Welling, H.

Westly, D.

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

Westly, D. A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wong, J. J.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Wrachtrup, J.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

Yakes, M.

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Yonezawa, H.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Yu, M.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

Zbinden, H.

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

Zhang, H. H.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

Zhao, Z.-T.

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

Zhou, B. B.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

Zhou, Q.

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

APL Photonics (2)

H. Chen, S. Auchter, M. Prilmüller, A. Schlager, T. Kauten, K. Laiho, B. Pressl, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Time-bin entangled photon pairs from bragg-reflection waveguides,” APL Photonics 3(8), 080804 (2018).
[Crossref]

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photonics 2(4), 046103 (2017).
[Crossref]

Appl. Phys. Lett. (3)

S. Aghaeimeibodi, B. Desiatov, J.-H. Kim, C.-M. Lee, M. A. Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks, “Integration of quantum dots with lithium niobate photonics,” Appl. Phys. Lett. 113(22), 221102 (2018).
[Crossref]

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in afm-written domain patterns in ion-sliced linbo3 films,” Appl. Phys. Lett. 110(13), 132905 (2017).
[Crossref]

A. Valencia, G. Scarcelli, and Y. Shih, “Distant clock synchronization using entangled photon pairs,” Appl. Phys. Lett. 85(13), 2655–2657 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Fathpour, “Heterogeneous nonlinear integrated photonics,” IEEE J. Quantum Electron. 54(6), 1–16 (2018).
[Crossref]

Laser Photonics Rev. (1)

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photonics Rev. 13(3), 1800288 (2019).
[Crossref]

Nat. Photonics (2)

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12(9), 516–527 (2018).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

New J. Phys. (1)

C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Clock synchronization by remote detection of correlated photon pairs,” New J. Phys. 11(4), 045011 (2009).
[Crossref]

npj Quantum Inf. (2)

E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Inf. 4(1), 40 (2018).
[Crossref]

L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, and C. Silberhorn, “A two-channel, spectrally degenerate polarization entangled source on chip,” npj Quantum Inf. 3(1), 5 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (3)

OSA Continuum (1)

Phys. Rev. A (1)

L.-H. Hong, B.-Q. Chen, C.-Y. Hu, and Z.-Y. Li, “Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching,” Phys. Rev. A 98(2), 023820 (2018).
[Crossref]

Phys. Rev. Appl. (2)

D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Photonic-chip supercontinuum with tailored spectra for counting optical frequencies,” Phys. Rev. Appl. 8(1), 014027 (2017).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11(3), 034026 (2019).
[Crossref]

Phys. Rev. Lett. (5)

T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, and R. T. Thew, “Nonlinear interaction between single photons,” Phys. Rev. Lett. 113(17), 173601 (2014).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref]

M. Grimau Puigibert, G. H. Aguilar, Q. Zhou, F. Marsili, M. D. Shaw, V. B. Verma, S. W. Nam, D. Oblak, and W. Tittel, “Heralded single photons based on spectral multiplexing and feed-forward control,” Phys. Rev. Lett. 119(8), 083601 (2017).
[Crossref]

Sci. Adv. (1)

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. V. Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4(12), eaat9331 (2018).
[Crossref]

Sci. Rep. (3)

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Rep. 7(1), 14831 (2017).
[Crossref]

Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, and Y.-P. Huang, “Direct generation and detection of quantum correlated photons with 3.2 um wavelength spacing,” Sci. Rep. 7(1), 17494 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep. 7(1), 6495 (2017).
[Crossref]

Science (2)

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Other (8)

A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, and A. Mitchell, “Improved second harmonic performance in periodically poled lnoi waveguides through engineering of lateral leakage,” arXiv preprint arXiv:1906.02383 (2019).

F. Kaiser, P. Vergyris, A. Martin, D. Aktas, O. Alibart, and S. Tanzilli, “Quantum optical frequency conversion for polarisation entangled qubits: towards interconnected quantum information devices,” arXiv e-prints arXiv:1901.09826 (2019).

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, and V. Anant, “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv e-prints arXiv:1805.04011 (2018).

J.-Y. Chen, Y. M. Sua, Z. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient second-harmonic generation in sub-micron ppln waveguides,” in Frontiers in Optics / Laser Science (Optical Society of America, 2018), p. JTu2A.87.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SF2I.2.

C. Autebert, A. Minneci, G. Maltese, J. Belhassen, A. Lemaître, M. Amanti, F. Baboux, T. Coudreau, P. Milman, and S. Ducci, “On-chip generation of frequency-entangled qudits,” in Quantum Information and Measurement (QIM) 2017 (Optical Society of America, 2017), p. QW2C.2.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Loncar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” arXiv e-prints arXiv:1901.11101 (2019).

U. Paudel, J. J. Wong, M. Goggin, P. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. Steel, “Direct Excitation of a Single Quantum Dot with Cavity-SPDC Photons,” arXiv e-prints arXiv:1812.07165 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The cross-section of a typical PPLN nanowaveguide. (b)-(c) and (d)-(e) are the simulated and measured mode profiles for 775 nm and 1550 nm quasi-TE$_{00}$ mode, respectively. The scale bar is 500 nm.
Fig. 2.
Fig. 2. (a) X-cut LNOI wafer. (b) Cr-AU Comb electrodes on LN wafer (c) Poling areas after several 20-ms high voltage pulses. (d) PPLN nanowaveguide after the complete fabrication process. Top silicon oxide cladding is not shown in (d). SEM images showing the (e) top view and (f) sidewall of PPLN waveguide before PECVD cladding.
Fig. 3.
Fig. 3. (a) Phase match curve of PPLN waveguide. (b) DFG spectrum when pump at the phase-matched wavelength around 766.5 nm at 0.1 mW peak power in the waveguide. The discrepancy in center wavelength between (a) and (b) is mainly due to different coupling scheme.
Fig. 4.
Fig. 4. Schematic of the experimental setup. The pump laser for photon pair generation is obtained from a visible tunable laser (TL1). The pump laser for SHG measurement is a near-infra-red tunable laser (TL2). BPF, band-pass filter, QWP, quarter-wave plate, HWP, half-wave plate, PBS, polarization beam splitter, DM, dichroic mirror, LPF, long-pass filter, SPD, single photon detector, WS, waveshaper, TDC, time-to-digital converter, FPC, fiber polarization controller.
Fig. 5.
Fig. 5. (a) Measured coincidence (blue dots) and accidental (red squares) counts and (b) coincidence-to-accidental-counts ratio, CAR (red dot), as a function of photon production rate.
Fig. 6.
Fig. 6. Coincidence count measured at selected signal/idler wavelength combinations. Significant coincidence counts (corresponding to a peak) are observed only between channels fulfilling energy and momentum conservation.
Fig. 7.
Fig. 7. (a) The spectrum of one mode which yields $2\times 10{^6}$ quality factor at around 1600 nm. (b) The spectra of Fabry-Perot resonances formed by the PPLN wavguide and its two facets.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = 8 π 2 ϵ 0 c λ 2 ω 2 d e f f 2 n e f f 2 ω ( n e f f ω ) 2 E 2 ω E ω 2 d x d z | E 2 ω | 2 d x d z | E ω | 2 d x d z L 2 s i n c 2 ( Δ K L / 2 ) ,
Δ K = k s , s h g 2 k p , s h g 2 π Λ s h g = 0 ,
Δ K = k p , s p d c k s , s p d c k i , s p d c 2 π Λ s p d c = 0 ,