Abstract

The nonlinear optical properties of Rh–Pd and Rh–Pt solid-solution alloy nanoparticles (NPs) were experimentally investigated by means of the z-scan technique. The open aperture (OA) measurement showed a reverse saturable behavior, whereas the closed aperture (CA) measurement showed a peak- and valley-shape. Both the Rh–Pd and Rh–Pt NPs exhibited a positive nonlinear optical index of refraction at 800 nm relating to the self-focusing phenomenon. In addition, the nonlinear absorption of the Rh–Pt NPs (4.39 × 10−12 cm/W) was higher than that of the Rh–Pd NPs (1.63 × 10−12 cm/W) due to the small interval between the occupied and unoccupied density of states (DOS) of Rh–Pt than Rh–Pd. The nonlinear responses of the Rh–Pd and Rh–Pt NPs was attributed to the hot electron contribution and the reverse saturation of intraband and interband transitions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles

Mengmeng Yue, Jinhai Si, Lihe Yan, Yang Yu, and Xun Hou
Opt. Mater. Express 8(3) 698-703 (2018)

Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, Cid B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver
Opt. Express 24(9) 9955-9965 (2016)

One photon nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution

Diego Rativa, R. E. de Araujo, and A. S. L. Gomes
Opt. Express 16(23) 19244-19252 (2008)

References

  • View by:
  • |
  • |
  • |

  1. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
    [Crossref]
  2. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993).
    [Crossref]
  3. S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
    [Crossref]
  4. G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
    [Crossref]
  5. G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
    [Crossref]
  6. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
    [Crossref]
  7. N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
    [Crossref]
  8. V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
    [Crossref]
  9. N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
    [Crossref]
  10. M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
    [Crossref]
  11. J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
    [Crossref]
  12. D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
    [Crossref]
  13. H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  14. T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold–silver nanoplanets,” Opt. Express 20(4), 4537–4547 (2012).
    [Crossref]
  15. J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
    [Crossref]
  16. S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
    [Crossref]
  17. Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
    [Crossref]
  18. Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
    [Crossref]
  19. S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
    [Crossref]
  20. S. Alayoglu and B. Eichhorn, “Rh−Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles,” J. Am. Chem. Soc. 130(51), 17479–17486 (2008).
    [Crossref]
  21. J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
    [Crossref]
  22. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
    [Crossref]
  23. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
    [Crossref]
  24. M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
    [Crossref]
  25. M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
    [Crossref]
  26. M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
    [Crossref]
  27. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  28. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
    [Crossref]
  29. X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
    [Crossref]
  30. F. Abrinaei and N. Molahasani, “Effects of Mn doping on the structural, linear, and nonlinear optical properties of ZnO nanoparticles,” J. Opt. Soc. Am. B 35(8), 2015–2022 (2018).
    [Crossref]
  31. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B 20(6), 1227–1232 (2003).
    [Crossref]
  32. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
    [Crossref]
  33. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  34. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer, 1995).
  35. N. D. Fatti and F. Vallée, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B: Lasers Opt. 73(4), 383–390 (2001).
    [Crossref]
  36. D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
    [Crossref]
  37. A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
    [Crossref]
  38. Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
    [Crossref]
  39. C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
    [Crossref]
  40. R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
    [Crossref]
  41. J. H. Weaver, “Optical properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11(4), 1416–1425 (1975).
    [Crossref]
  42. N. V. Smith, “Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au,” Phys. Rev. B 9(4), 1365–1376 (1974).
    [Crossref]
  43. O. K. Anderson, “Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd,” Phys. Rev. B 2(4), 883–906 (1970).
    [Crossref]
  44. T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
    [Crossref]
  45. E. Puppin and P. Vavassori, “UV inverse photoemission from low-d-occupancy transition metals,” J. Phys. 4(25), 5551–5560 (1992).
    [Crossref]
  46. M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
    [Crossref]
  47. L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
    [Crossref]
  48. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
    [Crossref]
  49. Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
    [Crossref]

2018 (1)

2016 (1)

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref]

2015 (3)

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
[Crossref]

2014 (2)

M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
[Crossref]

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

2013 (2)

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

2012 (3)

Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
[Crossref]

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold–silver nanoplanets,” Opt. Express 20(4), 4537–4547 (2012).
[Crossref]

2011 (2)

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

2010 (3)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

2008 (3)

S. Alayoglu and B. Eichhorn, “Rh−Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles,” J. Am. Chem. Soc. 130(51), 17479–17486 (2008).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

2007 (1)

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

2006 (5)

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

2005 (4)

N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
[Crossref]

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
[Crossref]

2004 (2)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

2003 (1)

2001 (3)

N. D. Fatti and F. Vallée, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B: Lasers Opt. 73(4), 383–390 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

1999 (2)

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1996 (1)

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

1993 (1)

1992 (1)

E. Puppin and P. Vavassori, “UV inverse photoemission from low-d-occupancy transition metals,” J. Phys. 4(25), 5551–5560 (1992).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

1985 (1)

1975 (1)

J. H. Weaver, “Optical properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11(4), 1416–1425 (1975).
[Crossref]

1974 (2)

N. V. Smith, “Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au,” Phys. Rev. B 9(4), 1365–1376 (1974).
[Crossref]

R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
[Crossref]

1970 (1)

O. K. Anderson, “Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd,” Phys. Rev. B 2(4), 883–906 (1970).
[Crossref]

Abrinaei, F.

Aeschlimann, M.

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

Akundi, M. A.

Alayoglu, S.

S. Alayoglu and B. Eichhorn, “Rh−Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles,” J. Am. Chem. Soc. 130(51), 17479–17486 (2008).
[Crossref]

Alcaraz de la Osa, R.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Anderson, O. K.

O. K. Anderson, “Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd,” Phys. Rev. B 2(4), 883–906 (1970).
[Crossref]

Anniyev, T.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Antony, J. V.

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

Baba, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Bakr, O. M.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

Ballauff, M.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Battaglin, G.

Bergmann, U.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

Brooks, E.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Bubb, D. M.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Calvelli, P.

Calvete, M. J. F.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref]

Cesca, T.

Chandran, P.

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

Chen, J. L. T.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Chen, J. Y.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Chen, S. Q.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Crooks, R. M.

S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
[Crossref]

Culp, C. H.

R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
[Crossref]

De, G.

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

De, S.

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

Dini, D.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref]

Drechsler, M.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Dyson, P. J.

Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
[Crossref]

Eichhorn, B.

S. Alayoglu and B. Eichhorn, “Rh−Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles,” J. Am. Chem. Soc. 130(51), 17479–17486 (2008).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Everitt, H. O.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Fan, G.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

Fatti, N. D.

N. D. Fatti and F. Vallée, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B: Lasers Opt. 73(4), 383–390 (2001).
[Crossref]

Fierz, M.

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

Finkelstein, G.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
[Crossref]

Fu, M.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Gao, R.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

González, F.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Grass, M. E.

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

Guo, S.

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

Guo, Z.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Gurudas, U.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Haglund, R. F.

Haglund Jr, R. F.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

Hamanaka, Y.

Hanack, M.

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref]

Hayashi, N.

Heiroth, S.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Herbani, Y.

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

Hetsch, F.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Hosono, H.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

Hou, L.

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

Huang, W.

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

Ichihara, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Irrgang, T.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Ji, W.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Kamalov, S. R.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Kannaiyan, G.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Kasemo, B.

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

Kempe, R.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Kochimoolayil, G. E.

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Koh, S.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer, 1995).

Kumar, R. S. S.

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

Kurian, P.

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

Kuroda, H.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Langhammer, C.

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

Lee, J. Y.

H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Li, H.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Li, Z.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

Li, Z. Y.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Liberman, V.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Lippert, T.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Liu, J.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Liu, X.

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

Liu, Z. B.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Ljungberg, M. P.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Long, H.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Lu, P.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Lu, Y.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

MacNaughton, J. B.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Magruder, R. H.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993).
[Crossref]

Mamidala, V.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Mattei, G.

Mazzoldi, P.

Medda, S. K.

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

Mei, Y.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Molahasani, N.

Moreno, F.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Nakamura, A.

Nakamura, T.

M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
[Crossref]

M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
[Crossref]

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

Nalla, V.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Narayana, R. D.

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

Naslund, L.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Nilsson, A.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Niu, Y.

S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
[Crossref]

Ogasawara, H.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Oh, S. K.

S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
[Crossref]

Omi, S.

Osborne, D. H.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

Pettersson, L. G. M.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Porel, S.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

Puppin, E.

E. Puppin and P. Vavassori, “UV inverse photoemission from low-d-occupancy transition metals,” J. Phys. 4(25), 5551–5560 (1992).
[Crossref]

Qiu, J.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Qu, S.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Radhakrishnan, T. P.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

Rao, D. N.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
[Crossref]

Ren, S.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Renzas, J. R.

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
[Crossref]

Rogach, A. L.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Rosei, R.

R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
[Crossref]

Rothschild, M.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

Roussignol, Ph.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sanz, J. M.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Sarker, M. S. I.

M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
[Crossref]

M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
[Crossref]

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

Sato, S.

M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
[Crossref]

M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
[Crossref]

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

Scharte, M.

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

Sharma, G.

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Siegmann, K.

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

Smith, N. V.

N. V. Smith, “Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au,” Phys. Rev. B 9(4), 1365–1376 (1974).
[Crossref]

Somorjai, G. A.

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

Stellacci, F.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

Stepanov, A. L.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

Strasser, P.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Susha, A. S.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Suzuki, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Tian, J. G.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Vadakkedathu, N. P. N.

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

Vallée, F.

N. D. Fatti and F. Vallée, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B: Lasers Opt. 73(4), 383–390 (2001).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vavassori, P.

E. Puppin and P. Vavassori, “UV inverse photoemission from low-d-occupancy transition metals,” J. Phys. 4(25), 5551–5560 (1992).
[Crossref]

Venkatram, N.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
[Crossref]

Vittal, J. J.

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer, 1995).

Wang, H.

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

Wang, K.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Wang, Q.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

Wang, Y.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Watson, A. M.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Weaver, J. H.

J. H. Weaver, “Optical properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11(4), 1416–1425 (1975).
[Crossref]

R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

White, C. W.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

Wikfeldt, K. T.

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Wiley, B.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Wittig, J. E.

Wokaun, A.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

Xia, Y. N.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Xiong, Y. J.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Yan, N.

Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
[Crossref]

Yang, G.

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Yang, J.

H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, L.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993).
[Crossref]

Yin, Y. D.

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

Yuan, Y.

Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
[Crossref]

Yuan, Z.

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

Zhang, L.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

Zhang, X.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Zhang, Y.

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Zhao, C.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

Zheng, J. Y.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Zhu, C.

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Zhu, Y.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Zhu, Y. Z.

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

Zoric, I.

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

Zuhr, R. A.

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993).
[Crossref]

ACS Catal. (1)

Y. Yuan, N. Yan, and P. J. Dyson, “Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle cre and stabilizer,” ACS Catal. 2(6), 1057–1069 (2012).
[Crossref]

Appl. Phys. A (3)

M. S. I. Sarker, T. Nakamura, Y. Herbani, and S. Sato, “Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution,” Appl. Phys. A 110(1), 145–152 (2013).
[Crossref]

L. Yang, D. H. Osborne, R. F. Haglund Jr, R. H. Magruder, C. W. White, R. A. Zuhr, and H. Hosono, “Probing interface properties of nanocomposites by third-order nonlinear optics,” Appl. Phys. A 62(5), 403–415 (1996).
[Crossref]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47(4), 347–357 (1988).
[Crossref]

Appl. Phys. B: Lasers Opt. (3)

M. Fierz, K. Siegmann, M. Scharte, and M. Aeschlimann, “Time-resolved 2-photon photoionization on metallic nanoparticles,” Appl. Phys. B: Lasers Opt. 68(3), 415–418 (1999).
[Crossref]

N. D. Fatti and F. Vallée, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B: Lasers Opt. 73(4), 383–390 (2001).
[Crossref]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B: Lasers Opt. 100(3), 571–576 (2010).
[Crossref]

Appl. Phys. Lett. (2)

H. I. Elim, J. Yang, and J. Y. Lee, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, “Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot-metal nanoparticle structures,” Appl. Phys. Lett. 100(6), 063117 (2012).
[Crossref]

Catal. Lett. (1)

J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, and G. A. Somorjai, “Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO,” Catal. Lett. 141(2), 235–241 (2011).
[Crossref]

Chem. Rev. (1)

D. Dini, M. J. F. Calvete, and M. Hanack, “Nonlinear optical materials for the smart filtering of optical radiation,” Chem. Rev. 116(22), 13043–13233 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

S. Alayoglu and B. Eichhorn, “Rh−Pt bimetallic catalysts: Synthesis, characterization, and catalysis of core−shell, alloy, and monometallic nanoparticles,” J. Am. Chem. Soc. 130(51), 17479–17486 (2008).
[Crossref]

J. App. Phys. (1)

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. App. Phys. 109(2), 023102 (2011).
[Crossref]

J. Appl. Phys. (3)

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008).
[Crossref]

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film,” J. Appl. Phys. 102(3), 033107 (2007).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

J. Mater. Res. (1)

M. S. I. Sarker, T. Nakamura, and S. Sato, “Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions,” J. Mater. Res. 29(7), 856–864 (2014).
[Crossref]

J. Nanopart. Res. (1)

M. S. I. Sarker, T. Nakamura, and S. Sato, “All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant,” J. Nanopart. Res. 17(6), 259 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

N. Venkatram, R. S. S. Kumar, R. D. Narayana, S. K. Medda, S. De, and G. De, “Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2–TiO2 sol–gel films,” J. Nanosci. Nanotechnol. 6(7), 1990–1994 (2006).
[Crossref]

J. Opt. (1)

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12(6), 065001 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

E. Puppin and P. Vavassori, “UV inverse photoemission from low-d-occupancy transition metals,” J. Phys. 4(25), 5551–5560 (1992).
[Crossref]

J. Phys. Chem. B (2)

Z. B. Liu, Y. Z. Zhu, Y. Zhu, S. Q. Chen, J. Y. Zheng, and J. G. Tian, “Nonlinear absorption and nonlinear refraction of self-assembled porphyrins,” J. Phys. Chem. B 110(31), 15140–15145 (2006).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

J. Phys. Chem. C (1)

J. V. Antony, P. Chandran, P. Kurian, N. P. N. Vadakkedathu, and G. E. Kochimoolayil, “Surface effects on photoluminescence and optical nonlinearity of CdS quantum dots stabilized by sulfonated polystyrene in water,” J. Phys. Chem. C 119(15), 8280–8289 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D: Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Langmuir (2)

Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, and R. Kempe, “High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes,” Langmuir 21(26), 12229–12234 (2005).
[Crossref]

S. K. Oh, Y. Niu, and R. M. Crooks, “Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers,” Langmuir 21(22), 10209–10213 (2005).
[Crossref]

Nano Lett. (3)

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium Nanoparticles for Ultraviolet Plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, Y. D. Yin, and Z. Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Lett. 5(7), 1237–1242 (2005).
[Crossref]

C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett. 6(4), 833–838 (2006).
[Crossref]

New J. Chem. (1)

J. L. T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, and J. J. Vittal, “Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites,” New J. Chem. 38(3), 985–992 (2014).
[Crossref]

Opt. Commun. (2)

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, “Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser,” Opt. Mater. 28(3), 259–265 (2006).
[Crossref]

Opt. Quantum Electron. (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36(10), 949–960 (2004).
[Crossref]

Phys. Chem. Chem. Phys. (1)

T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L. Naslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson, “Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts,” Phys. Chem. Chem. Phys. 12(21), 5694–5700 (2010).
[Crossref]

Phys. Rev. B (4)

R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental,” Phys. Rev. B 10(2), 484–489 (1974).
[Crossref]

J. H. Weaver, “Optical properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11(4), 1416–1425 (1975).
[Crossref]

N. V. Smith, “Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au,” Phys. Rev. B 9(4), 1365–1376 (1974).
[Crossref]

O. K. Anderson, “Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd,” Phys. Rev. B 2(4), 883–906 (1970).
[Crossref]

Phys. Status Solidi B (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at (λ = 1064 nm,” Phys. Status Solidi B 241(4), 935–944 (2004).
[Crossref]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup for the measurement of nonlinear optical characteristics of NPs suspension through a z-scan technique.
Fig. 2.
Fig. 2. (a) UV-vis spectra of colloidal suspensions and TEM images of (b) Rh–Pd and (c) Rh–Pt NPs.
Fig. 3.
Fig. 3. (a), (c) represents HAADF-STEM images and (b), (d) shows the corresponding EDX mappings of Rh–Pd and Rh–Pt NPs synthesized by laser-induced nucleation.
Fig. 4.
Fig. 4. XRD patterns of NPs in the mixed solutions of Rh, Pd and Pt ions.
Fig. 5.
Fig. 5. OA z-scan experimental (closed circles) data and theoretical fittings (solid lines) of (a) Rh–Pd and (b) Rh–Pt NPs.
Fig. 6.
Fig. 6. Experimental data (closed circles) and theoretical fits (solid lines) for CA scheme of the colloidal suspensions of (a) Rh–Pd and (b) Rh–Pt NPs synthesized through laser-induced nucleation method.

Tables (1)

Tables Icon

Table 1. Nonlinear optical parameters measured at 800 nm of colloidal suspension of Rh–Pd and Rh–Pt NPs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 d h k l 2 = 1 a 2 ( h 2 + k 2 + l 2 )
T ( z ) = m = 0 [ q 0 ( z , 0 ) ] m ( m + 1 ) 3 / 3 2 2 ,
T ( z ) = 1 + 4 x ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ 4 ( x 2 + 3 ) ( x 2 + 9 ) ( x 2 + 1 ) Δ Ψ ,
Δ Φ = k γ I 0 L e f f ,
Δ Ψ = β I 0 L e f f / β I 0 L e f f 2 2 .
Δ Ψ = ρ Δ Φ .
T ( z ) = 1 + 2 ( ρ x 2 + 2 x 3 ρ ) ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ .
| χ ( 3 ) | = [ ( Re χ ( 3 ) ) 2 + ( Im χ ( 3 ) ) 2 ] 1 / 1 2 2 ,