Abstract

Conjugated light-emitting polymer materials have demonstrated many useful photonic applications, attracting a lot of research interest in recent years. In this work, we present a novel hybrid photonic platform based on conjugated polymer Poly[2-(2’,5′-bis(2”-ethylhexyloxy)- phenyl) −1,4phenylene vinylene] (BEHP-PPV) integrated with a silicon nitride (SiNx) grating. By directly growing a low temperature SiNx layer on the thin organic polymer film, the degradation of organic polymer is significantly minimized. More importantly, the grating structure can effectively improve the amplified spontaneous emission (ASE) properties, reducing the threshold of ASE by up to 60%. These results demonstrated that the hybrid integration of light-emitting polymer with the SiNx grating is an effective solution to combine cost-effective and easy-to-process organic photonic materials with high-performance inorganic dielectric nanostructures, which could find many applications in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid light-emitting polymer/SiNx platform for photonic integration

Zeming Fan, Zeru Wu, Yujie Chen, Zengkai Shao, Yanfeng Zhang, Zhiren Qiu, and Siyuan Yu
Opt. Express 25(26) 33527-33533 (2017)

Low threshold optically pumped lasing from MEH-PPV quasi-periodic photonic crystal microcavity

Yuanyuan Cai, Xiaoyan Jiao, Xiao Chen, Xiaoqing Wang, Shuai Feng, Zhi Wang, and Yiquan Wang
Appl. Opt. 58(18) 4853-4857 (2019)

Photonic crystal slabs in flexible organic light-emitting diodes

Arfat Pradana and Martina Gerken
Photon. Res. 3(2) 32-37 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
    [Crossref]
  2. Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
    [Crossref]
  3. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
    [Crossref]
  4. S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
    [Crossref]
  5. M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
    [Crossref]
  6. S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
    [Crossref]
  7. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
    [Crossref]
  8. J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
    [Crossref]
  9. K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
    [Crossref]
  10. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
    [Crossref]
  11. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
    [Crossref]
  12. S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
    [Crossref]
  13. K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
    [Crossref]
  14. H. Suzuki, “Organic light-emitting materials and devices for optical communication technology,” J. Photochem. Photobiol., A 166(1–3), 155–161 (2004).
    [Crossref]
  15. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  16. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
    [Crossref]
  17. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
    [Crossref]
  18. J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
    [Crossref]
  19. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultralow temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
    [Crossref]
  20. Z. Fan, Z. Wu, Y. Chen, Z. Shao, Y. Zhang, Z. Qiu, and S. Yu, “Hybrid light-emitting polymer/SiNx platform for photonic integration,” Opt. Express 25(26), 33527–33533 (2017).
    [Crossref]
  21. R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
    [Crossref]
  22. A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
    [Crossref]
  23. Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
    [Crossref]
  24. Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
    [Crossref]
  25. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
    [Crossref]
  26. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref]
  27. G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
    [Crossref]
  28. A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
    [Crossref]

2019 (1)

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

2018 (3)

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

2017 (3)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Z. Fan, Z. Wu, Y. Chen, Z. Shao, Y. Zhang, Z. Qiu, and S. Yu, “Hybrid light-emitting polymer/SiNx platform for photonic integration,” Opt. Express 25(26), 33527–33533 (2017).
[Crossref]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

2016 (2)

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultralow temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

2015 (1)

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

2014 (1)

S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
[Crossref]

2013 (4)

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (1)

2011 (4)

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

2010 (1)

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
[Crossref]

2007 (2)

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

2005 (1)

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

2004 (1)

H. Suzuki, “Organic light-emitting materials and devices for optical communication technology,” J. Photochem. Photobiol., A 166(1–3), 155–161 (2004).
[Crossref]

2000 (1)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
[Crossref]

1997 (1)

G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
[Crossref]

Adachi, C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Amthor, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Baños, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Bencheikh, F.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Bhattacharya, P.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Bouchoule, S.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Brabec, C. J.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Brimont, C.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Bryce, M. R.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
[Crossref]

Bulovic, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Chassé, T.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Chen, H.

Chen, Y.

Z. Fan, Z. Wu, Y. Chen, Z. Shao, Y. Zhang, Z. Qiu, and S. Yu, “Hybrid light-emitting polymer/SiNx platform for photonic integration,” Opt. Express 25(26), 33527–33533 (2017).
[Crossref]

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultralow temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref]

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Chiba, T.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Dang, L. S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Dawson, M. D.

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Disseix, P.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Domínguez, C.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

Egelhaaf, H.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Eggeling, M.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Fan, Z.

Fernández, J.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Früh, A.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Fujihara, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Goushi, K.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Gu, E.

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Guilhabert, B.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Guillet, T.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Hainberger, R.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Halas, N. J.

G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
[Crossref]

Hale, G. D.

G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
[Crossref]

Hander, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
[Crossref]

Hayashi, Y.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Heo, J.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

Hermann, S.

S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
[Crossref]

Herrnsdorf, J.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Hintz, H.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Höfling, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Inoue, M.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Jahangir, S.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Jian, J.

Joly, G. D.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[Crossref]

Kamoun, O.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Kamp, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Kamtekar, K. T.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
[Crossref]

Kanibolotsky, A. L.

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Kato, T.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Kido, J.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Kim, N. Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Koppitsch, G.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Kraft, J.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Lafosse, X.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Laurand, N.

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Leinse, A.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Leroux, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Leymarie, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Li, D.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Li, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Li, K. H.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Liu, L.

Liu, M.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Liu, X.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Liu, Y.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Ma, J.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Mackintosh, A. R.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Maese-Novo, A.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Malpuech, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Matsushima, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Meerholz, K.

S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
[Crossref]

Mexis, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Mi, Z.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Mihailovic, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Monkman, A. P.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Muellner, P.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Muñoz, P.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Nevlacsil, S.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Ohisa, S.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Oldenburg, S. J.

G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
[Crossref]

Orosz, L.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Patriarche, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Peisert, H.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Peng, Z.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Pethrick, R. A.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

Pu, Y.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Qiu, Z.

Quinones, D.

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Réveret, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Ribierre, J.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Sagmeister, M.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Saleh, A. A.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
[Crossref]

Samuel, I. D. W.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Sandanayaka, A. S. D.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Sato, R.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Sato, S.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Schneider, C.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Schotter, J.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Shallcross, R. C.

S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
[Crossref]

Shao, Z.

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Skabara, P. J.

Y. Chen, Y. Zhang, N. Laurand, A. L. Kanibolotsky, E. Gu, P. J. Skabara, and M. D. Dawson, “Organic polymer composite random laser operating underwater,” Opt. Lett. 37(24), 5160–5162 (2012).
[Crossref]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Solnyshkov, D.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Suzuki, H.

H. Suzuki, “Organic light-emitting materials and devices for optical communication technology,” J. Photochem. Photobiol., A 166(1–3), 155–161 (2004).
[Crossref]

Suzuki, M.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Swager, T. M.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[Crossref]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Thomas, S. W.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[Crossref]

Turnbull, G. A.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

Vogelbacher, F.

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Wang, Q.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Wang, Y.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Watson, I. M.

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Wu, Z.

Xiao, B.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

Xuan, L.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Yamamoto, Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Yang, C.

Yokoyama, D.

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

Yoshida, K.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Yota, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
[Crossref]

Yu, S.

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

Zhang, F.

Zhang, G.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

Zhang, Y.

Zhao, S.

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Zhou, L.

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Zuniga-Perez, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Adv. Mater. (4)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref]

S. Hermann, R. C. Shallcross, and K. Meerholz, “Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating,” Adv. Mater. 26(34), 6019–6024 (2014).
[Crossref]

S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y. Pu, and J. Kido, “Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers,” Adv. Mater. 30(18), 1870127 (2018).
[Crossref]

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. 22(5), 572–582 (2010).
[Crossref]

Appl. Phys. Lett. (2)

Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[Crossref]

G. D. Hale, S. J. Oldenburg, and N. J. Halas, “Effects of photo-oxidation on conjugated polymer films,” Appl. Phys. Lett. 71(11), 1483–1485 (1997).
[Crossref]

Chem. Rev. (2)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[Crossref]

J. Mater. Res. (1)

A. Früh, H. Egelhaaf, H. Hintz, D. Quinones, C. J. Brabec, H. Peisert, and T. Chassé, “PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone,” J. Mater. Res. 33(13), 1891–1901 (2018).
[Crossref]

J. Photochem. Photobiol., A (1)

H. Suzuki, “Organic light-emitting materials and devices for optical communication technology,” J. Photochem. Photobiol., A 166(1–3), 155–161 (2004).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D: Appl. Phys. 49(46), 465102 (2016).
[Crossref]

J. Vac. Sci. Technol., A (1)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low-pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol., A 18(2), 372–376 (2000).
[Crossref]

Nano Lett. (1)

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref]

Nat. Nanotechnol. (1)

K. H. Li, X. Liu, Q. Wang, S. Zhao, and Z. Mi, “Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature,” Nat. Nanotechnol. 10(2), 140–144 (2015).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nature (3)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Org. Electron. (1)

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Phys. Rev. Lett. (1)

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polaritoncondensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110(19), 196406 (2013).
[Crossref]

Proc. IEEE (1)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Proc. SPIE (1)

R. Hainberger, P. Muellner, S. Nevlacsil, A. Maese-Novo, F. Vogelbacher, M. Eggeling, J. Schotter, M. Sagmeister, G. Koppitsch, and J. Kraft, “Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications,” Proc. SPIE 10922, 1092204 (2019).
[Crossref]

Sci. Adv. (1)

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J. Ribierre, and C. Adachi, “Toward continuous-wave operation of organic semiconductor lasers,” Sci. Adv. 3(4), e1602570 (2017).
[Crossref]

Sensors (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the hybrid BEHP-PPV/SiNx photonic device with grating structure. (b) AFM image of the SiNx grating. (c) Images of the test sample (left) and the bare sample (right) under UV light illumination. The grating structures are observable in the test sample (marked in the red circle).
Fig. 2.
Fig. 2. (a) ASE spectra of the test sample (grating depth: 170 nm; grating pitch number: 3000) and emission peak intensity versus excitation energy density for samples with different grating depths and grating pitch numbers of (b) 1000, (c) 2000, and (d) 3000.
Fig. 3.
Fig. 3. ASE gain threshold of samples with different grating number and etching depth.
Fig. 4.
Fig. 4. Simulation of (a) reflection spectra for hybrid grating structures (duty cycle: 70%) with different etching depth. (b) Simulation of polarization-dependent response and (c) electric field distribution at resonance wavelength for grating structures with etching depth of 160 nm and $\varphi = 0$.
Fig. 5.
Fig. 5. (a) Peak intensity of the test sample and the bare sample versus the number of pump pulses. (b) Test sample peak for at 0 hour and after 24 hours versus the number of pump pulses. (c) Test sample peak at 0 hour and after 60 hours measurement versus the number of pump pulses. (d) Test sample peak at 0 hour and after 72 hours measurement versus the number of pump pulses.
Fig. 6.
Fig. 6. Emission peak intensity versus the time when the test sample is exposed to air.