Abstract

A planar liquid crystal (LC) cell is designed by placing together a monolayer graphene coated glass slide and a planar-aligning polyimide layer on an indium tin oxide (ITO) coated glass slide. It is shown that the monolayer graphene film on one side of the cell can serve as the planar-alignment agent. At the same time, the monolayer graphene film also functions as the transparent electrode. The successful optical and electro-optical operations of this hybrid LC cell with monolayer graphene on one side and with ITO and associated planar-aligning polyimide on the other side are demonstrated. The measured optical transmission of the graphene electrode is found to be much better than that of the combined ITO-PI layers. The electro-optical effect and the dynamic electro-optic response of the LC in this graphene-polyimide-based hybrid cell reveal the typical director reorientation of the LC on the application of an electric field.

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
    [Crossref] [PubMed]
  3. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  5. A. Zurutuza and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nat. Nanotechnol. 9(10), 730–734 (2014).
    [Crossref] [PubMed]
  6. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [Crossref]
  7. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
    [Crossref] [PubMed]
  8. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
    [Crossref] [PubMed]
  9. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  10. R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
    [Crossref] [PubMed]
  11. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
    [Crossref] [PubMed]
  12. Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
    [Crossref]
  13. S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
    [Crossref]
  14. N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
    [Crossref] [PubMed]
  15. J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
    [Crossref]
  16. M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
    [Crossref]
  17. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).
  18. D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
    [Crossref] [PubMed]
  19. M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
    [Crossref] [PubMed]
  20. J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
    [Crossref] [PubMed]
  21. Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
    [Crossref] [PubMed]
  22. K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
    [Crossref]
  23. S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
    [Crossref]
  24. R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
    [Crossref]
  25. R. Basu and G. S. Iannacchione, “Nematic anchoring on carbon nanotubes,” Appl. Phys. Lett. 95(17), 173113 (2009).
    [Crossref]
  26. M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
    [Crossref] [PubMed]
  27. R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
    [Crossref]
  28. R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
    [Crossref] [PubMed]
  29. R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
    [Crossref] [PubMed]
  30. R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
    [Crossref]
  31. R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
    [Crossref]
  32. R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
    [Crossref]
  33. R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
    [Crossref]
  34. R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
    [Crossref]
  35. J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
    [Crossref]
  36. T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
    [Crossref] [PubMed]
  37. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
    [Crossref] [PubMed]
  38. Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
    [Crossref] [PubMed]
  39. S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
    [Crossref]
  40. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
    [Crossref]

2018 (1)

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

2017 (6)

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

2016 (3)

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

2015 (4)

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

2014 (5)

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

A. Zurutuza and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nat. Nanotechnol. 9(10), 730–734 (2014).
[Crossref] [PubMed]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

2012 (3)

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

2011 (4)

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

2010 (2)

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

2009 (1)

R. Basu and G. S. Iannacchione, “Nematic anchoring on carbon nanotubes,” Appl. Phys. Lett. 95(17), 173113 (2009).
[Crossref]

2008 (3)

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

2007 (4)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1989 (1)

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

1988 (1)

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Abrahamyan, V. K.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Agrawal, M.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Ahn, J.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

An, K. H.

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Aroutiounian, V. M.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Arslan Shehzad, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Bae, M.-H.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bae, S.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Baik, I. S.

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bao, Z.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Basu, R.

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

R. Basu and G. S. Iannacchione, “Nematic anchoring on carbon nanotubes,” Appl. Phys. Lett. 95(17), 173113 (2009).
[Crossref]

Becerril, H. A.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Booth, T. J.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

Brimicombe, P. D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Calizo, I.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Chae, D.-H.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Chang, C. M.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Chen, Y.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Cheng, G.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Cheng, H.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Choi, M.-R.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Choi, S. W.

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Choi, Y. E.

Dilanchian Gharghani, A. S.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Du, F.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eom, J.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Estrada, D.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Feng, X.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Garvey, A.

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gleeson, H. F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Guo, L. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Ha, D. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Ha, D.-H.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Hacker, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Hakobyan, N. H.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Han, T.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hight Walker, A. R.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Hill, E. W.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Hoang Tien, D.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Hong, B. H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hong, S. W.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Hong, S.-H.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Hsu, K. Y.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Huang, Y.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Huard, C. M.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Hur, S. T.

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Hussain, S.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Hwang, C.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Iannacchione, G. S.

R. Basu and G. S. Iannacchione, “Nematic anchoring on carbon nanotubes,” Appl. Phys. Lett. 95(17), 173113 (2009).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Jeon, S. Y.

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Jeong, H. S.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Jeong, S. H.

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Jeong, S. J.

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Jiang, D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, X.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Jung, H.-T.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Jung, J.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Jung, Y. U.

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Kang, S. J.

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Kang, S.-G.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Kasdorf, O.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Katsnelson, M. I.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

Kim, B. H.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, D. G.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, D. H.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, D. W.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kim, D.-H.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, G.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H.-S.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, J. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Kim, J.-H.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, R.-H.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, S.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Kim, W.-S.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Kim, Y. H.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kinnamon, D.

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

Kittrell, C.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Kitzerow, H.-S.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Kostanyan, A. B.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Kwon, Y. R.

Lee, A.

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

Lee, B.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Lee, B. H.

Lee, J.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Lee, J. H.

Lee, J.-H.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Lee, K.-T.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Lee, N.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Lee, S. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, S. M.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, T.-W.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lee, Y.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lee, Y. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, L.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Li, M.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Li, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Liang, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Liang, Y.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Lim, Y. J.

Lin, J.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Lin, S. H.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Lin, Y. H.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Liu, Z.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Margaryan, H. L.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Marinelli, C.

A. Zurutuza and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nat. Nanotechnol. 9(10), 730–734 (2014).
[Crossref] [PubMed]

Marinova, V.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Meyer, J. C.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

Morozov, S. V.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Müllen, K.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Murali, G.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Nguyen, V. L.

Novoselov, K. S.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Obeng, Y.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, J.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Park, J. H.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, K. A.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Park, K. W.

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Peng, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Peng, L.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Peng, Z.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Petrov, S.

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Peumans, P.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Ponomarenko, L. A.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Pop, E.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Richter, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Rogers, J. A.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

Roth, S.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

Samuel, E. L.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Schedin, F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

Seo, Y.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Shalov, S. A.

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

Shehzad, M. A.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Shen, T.-Z.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Shin, Y. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Skaggs, N.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Song, J.-K.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Sperling, B. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sun, Z.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Tabirian, N.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Tour, J. M.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Wahle, M.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Waqas Iqbal, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Whang, D.

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Wilkinson, T. D.

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Womack, J.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Woo, S.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Wu, C. S.

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Wu, J.

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Wu, S. T.

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Xiang, C.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yan, K.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Yang, Y.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Yu, J. S.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Yu, J.-S.

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

Yuan, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Zhu, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zhu, Y.

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Zurutuza, A.

A. Zurutuza and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nat. Nanotechnol. 9(10), 730–734 (2014).
[Crossref] [PubMed]

ACS Nano (3)

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, “Toward the synthesis of wafer-scale single-crystal graphene on copper foils,” ACS Nano 6(10), 9110–9117 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

T.-Z. Shen, S.-H. Hong, J.-H. Lee, S.-G. Kang, B. Lee, D. Whang, and J.-K. Song, “Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene,” Adv. Mater. 30(40), e1802441 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K.-T. Lee, and L. J. Guo, “ITO-Free, Compact, Color Liquid Crystal Devices Using Integrated Structural Color Filters and Graphene Electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Appl. Phys. Lett. (5)

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu and G. S. Iannacchione, “Nematic anchoring on carbon nanotubes,” Appl. Phys. Lett. 95(17), 173113 (2009).
[Crossref]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Beilstein J. Nanotechnol. (1)

N. H. Hakobyan, H. L. Margaryan, V. K. Abrahamyan, V. M. Aroutiounian, A. S. Dilanchian Gharghani, A. B. Kostanyan, T. D. Wilkinson, and N. Tabirian, “Electro-optical characteristics of a liquid crystal cell with graphene electrodes,” Beilstein J. Nanotechnol. 8, 2802–2806 (2017).
[Crossref] [PubMed]

Carbon (1)

J.-S. Yu, X. Jin, J. Park, D. H. Kim, D.-H. Ha, D.-H. Chae, W.-S. Kim, C. Hwang, and J.-H. Kim, “Structural analysis of graphene synthesized by chemical vapor deposition on copper foil using nematic liquid crystal texture,” Carbon 76, 113–122 (2014).
[Crossref]

J. Appl. Phys. (4)

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Detection of graphene chirality using achiral liquid crystalline platforms,” J. Appl. Phys. 118(11), 114302 (2015).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

J. Phys. Chem. C (1)

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a liquid crystal molecule on a single-walled carbon nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Liq. Cryst. (2)

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

Y. U. Jung, K. W. Park, S. T. Hur, S. W. Choi, and S. J. Kang, “High- transmittance liquid-crystal displays using graphene conducting layers,” Liq. Cryst. 41(1), 101–105 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Y. Liang, X. Feng, and K. Müllen, “Electrooptic Switching in Graphene-Based Liquid Crystal Cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Nano (1)

S. Y. Jeon, K. A. Park, I. S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” Nano 2(1), 41–49 (2007).
[Crossref]

Nano Lett. (4)

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, “Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,” Nano Lett. 11(9), 3881–3886 (2011).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008), i .
[Crossref] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

A. Zurutuza and C. Marinelli, “Challenges and opportunities in graphene commercialization,” Nat. Nanotechnol. 9(10), 730–734 (2014).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Nature (1)

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[Crossref] [PubMed]

Opt. Data Process. Storage (1)

S. Petrov, V. Marinova, S. H. Lin, C. M. Chang, Y. H. Lin, and K. Y. Hsu, “Large Scale Liquid Crystal Device with Graphene-based Electrodes,” Opt. Data Process. Storage 3(1), 114–118 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. E (2)

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic representation of the alignment of nematic LC molecules (ellipsoids) on MGP (honeycomb structure) due to π−π electron stacking. The MGP crystal is oriented along a ^ . The three-fold alignment degeneracy is illustrated as the nematic director, n ^ is orientated at (a) −60°, (b) 0°, (c) + 60°, with respect to a ^ . (d) Microphotograph of a thin layer of nematic LC E7 on the MGP film on a glass substrate under the crossed-polarized microscope. (e) Micrograph of the LC sample when rotated by 45° under the crossed-polarized microscope. (f) Micrograph of the MGP-MGP cell filled with LC E7 under the crossed-polarized microscope where the average director field, n ^ is at 45° with respect to the crossed polarizers (bright state). The black bar in micrograph (d) presents 50 μm.
Fig. 2
Fig. 2 Optical transmission intensity as a function wavelength for ITO/PI on glass and MGP on glass, listed in the legend. The visible wavelength range is shown by colors in the x-axis. The inset picture shows the two samples. Except for the shaded region (520 nm ≥ λ ≥ 570 nm), the MGP sample shows more optical transparency than the ITO/PI sample.
Fig. 3
Fig. 3 (a) A schematic representation of the MGP-PI hybrid cell which contains an MGP on one slide and ITO/PI on the other slide. (b) The picture of the MGP-PI hybrid cell. (c), (d) Micrographs of the bright and dark states, respectively, of the MGP-PI hybrid cell filled with LC E7 under the crossed-polarized microscope. (e) Normalized transmitted intensity of the MGP-PI hybrid cell as a function of the angle of rotation under the crossed-polarized microscope. Micrographs of the PI-Glass cell filled with LC E7 under the crossed-polarized microscope where the PI’s rubbing direction is at (f) 45° and (g) 0° with respect to the polarizer. The black bar in micrograph (c) and (f) presents 50 μm.
Fig. 4
Fig. 4 (a), (b), (c), (d), (e) Micrographs of the MGP-PI hybrid cell filled with LC E7 under the crossed-polarized microscope at 0 V, 15V, 22 V, 30 V, 45 V, respectively. (f) The transmittance, I I o of LC E7 (at T = 25° C) in the MGP-PI hybrid cell as a function of applied ac voltage (f = 1000 Hz). The inset shows the same transmittance curve in a smaller voltage range where six maxima can be counted. The white bar in micrograph (e) presents 100 μm.
Fig. 5
Fig. 5 (a) Left y-axis: Normalized transmitted intensity as a function of time when a peak-to-peak voltage (Vpp = 30 V) is turned off at t = 0, and then turned on at t = 16.6 ms, across the cell (at T = 25° C). Right y-axis: The applied voltage profile across the cell as a function of time. (b) τon (top panel) and τoff (bottom panel) as a function of Vpp for LC E7 in the MGP-PI hybrid cell.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I O sin 2 ( πd Δn λ )
τ rise = γ 1 d 2 Δε ε o V 2 K 11 π 2 ; τ decay = γ 1 d 2 K 11 π 2

Metrics