Abstract

A high performance eye-safe 1.55 µm microchip laser was fabricated by tightly pressing two sapphire crystals with high thermal conductivity and an Er:Yb:YAl3(BO3)4 laser crystal between them. Temperature distribution inside the Er:Yb:YAl3(BO3)4 was simulated by the finite element analysis method. 1.55 µm continuous-wave and passively Q-switched pulse laser properties were investigated. At an incident pump power of 7.2 W, a 1550 nm continuous-wave microchip laser with the maximum output power of 2.05 W and slope efficiency of 39.8% was realized. When a Co2+:MgAl2O4 saturable absorber with an initial transmission of 97% was placed between the Er:Yb:YAl3(BO3)4 and a sapphire crystal, a 1522 nm passively Q-switched microchip laser with pulse energy of about 10 µJ, repetition frequency of 77 kHz, width of 7 ns, and output peak power of 1.43 kW was realized at an incident pump power of 7.2 W.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 26(1) 419-427 (2018)

Single-longitudinal-mode 1521 nm passively q-switched Er:Yb:YAl3(BO3)4 pulse microchip laser

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 27(18) 26080-26086 (2019)

Fabrication and diode-pumped 1.55 μm continuous-wave laser performance of a diffusion-bonded Er:Yb:YAl3(BO3)4/YAl3(BO3)4 composite crystal

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 25(15) 17128-17133 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  2. B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).
  3. Y. M. Duan, H. Y. Zhu, Y. L. Ye, D. Zhang, G. Zhang, and D. Y. Tang, “Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser,” Opt. Lett. 39(5), 1314–1317 (2014).
    [Crossref]
  4. Y. J. Huang, Y. F. Chen, W. D. Chen, and G. Zhang, “Dual-wavelength eye-safe Nd:YAP Raman laser,” Opt. Lett. 40(15), 3560–3563 (2015).
    [Crossref]
  5. G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
    [Crossref]
  6. B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
    [Crossref]
  7. P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
    [Crossref]
  8. V. Kisel, K. Gorbachenya, A. Yasukevich, A. Ivashko, N. Kuleshov, V. Maltsev, and N. Leonyuk, “Passively Q-switched microchip Er,Yb:YAl3(BO3)4 diode-pumped laser,” Opt. Lett. 37(13), 2745–2747 (2012).
    [Crossref]
  9. N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
    [Crossref]
  10. R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
    [Crossref]
  11. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  12. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, and A. Tünnermann, “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4(5), 1092–1103 (2014).
    [Crossref]
  13. Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
    [Crossref]
  14. P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
    [Crossref]
  15. A. Brenier, “Tunable coherent infrared generation near 2.5 μm from self-difference frequency mixing in YAl3(BO3)4:Nd3+,” Appl. Opt. 43(32), 6007–6010 (2004).
    [Crossref]

2015 (1)

2014 (2)

2012 (1)

2009 (1)

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

2006 (1)

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

2004 (2)

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

A. Brenier, “Tunable coherent infrared generation near 2.5 μm from self-difference frequency mixing in YAl3(BO3)4:Nd3+,” Appl. Opt. 43(32), 6007–6010 (2004).
[Crossref]

2002 (2)

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

1998 (2)

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[Crossref]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Becker, P.

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[Crossref]

Brenier, A.

Burns, P.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Chen, W. D.

Chen, Y.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Chen, Y. F.

Dawes, J. M.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Dekker, P.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Denker, B.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Duan, Y. M.

Eberhardt, R.

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Galagan, B.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Gong, X.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Gorbachenya, K.

Hellstrom, J. E.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Huang, Y.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Huang, Y. J.

Ivashko, A.

Ivleva, L.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Karlsson, G.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

Kisel, V.

Kisel, V. E.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Klenke, A.

Kuleshov, N.

Kuleshov, N. V.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Laurell, F.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

Leonyuk, N.

Leonyuk, N. I.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Limpert, J.

Lin, Y.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Luo, Z.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Mac Donald, M.

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Maltsev, V.

Maltsev, V. V.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Osiko, V.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

Peschel, T.

Piper, J. A.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Prokhorov, A.

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Roos, M.

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Rothhardt, C.

Rothhardt, J.

Sverchkov, S.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Tan, Q.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

Tang, D. Y.

Tellefsen, J.

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

Tolstik, N. A.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

Tünnermann, A.

Voronina, I.

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Wang, J.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Weber, H.

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Yasukevich, A.

Ye, Y. L.

Zhang, D.

Zhang, G.

Zhang, H.

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Zhu, H. Y.

Adv. Mater. (1)

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, “Development and characterization of Yb-Er laser glass for high average power laser diode pumping,” Appl. Phys. B 75(1), 41–46 (2002).
[Crossref]

B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescence and laser properties of Yb-Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B 79(5), 577–581 (2004).
[Crossref]

Appl. Phys. Lett. (1)

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Weber, B. Neuenschwander, M. Mac Donald, M. Roos, and H. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, “CW diode-pumped microlaser operation at 1.5-1.6 μm in Er, Yb:YCOB,” IEEE Photon. Technol. Lett. 14(12), 1677–1679 (2002).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (1)

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Experimental setup for a 1.55 µm Er:Yb:YAB cw microchip laser.
Fig. 2.
Fig. 2. Absorption spectrum in 875–1075 nm of the Er:Yb:YAB crystal and emission spectrum of the LD used as the pumping source in the laser experiment.
Fig. 3.
Fig. 3. Temperature distribution along the direction of light propagation at the center of pump region inside the Er:Yb:YAB crystal at incident pump power of 7.2 W.
Fig. 4.
Fig. 4. Temperature distributions at the center cross-section inside the Er:Yb:YAB crystal at incident pump power of 7.2 W. (a) without sapphire cooling; (b) with sapphire cooling.
Fig. 5.
Fig. 5. Dependences of output power and spectrum on the incident pump power for the Er:Yb:YAB cw microchip laser at OM transmission of 2.5%.
Fig. 6.
Fig. 6. (a) Relationship between the squared beam radius and measured distance of the Er:Yb:YAB cw microchip laser at incident pump power of 7.2 W. The insets show the 2D and 3D images of the output beam. (b) Relationship between the output beam quality M2 and incident pump power of the Er:Yb:YAB cw microchip laser.
Fig. 7.
Fig. 7. Average output power and spectrum of the Er:Yb:YAB passively Q-switched pulse microchip laser at OM transmission of 2.5%. The inset shows the experimental setup for the Er:Yb:YAB passively Q-switched pulse microchip laser.
Fig. 8.
Fig. 8. Repetition frequency and pulse width of the Er:Yb:YAB passively Q-switched pulse microchip laser at OM transmission of 2.5%. (a) repetition frequency at incident pump power of 7.2 W; (b) repetition frequency at incident pump power of 6.07 W; (c) pulse width at incident pump power of 7.2 W.
Fig. 9.
Fig. 9. Dependences of the repetition frequency and pulse energy on incident pump power for the Er:Yb:YAB passively Q-switched pulse microchip laser.
Fig. 10.
Fig. 10. Spectra of the second and third harmonic of the Er:Yb:YAB passively Q-switched pulse microchip laser.

Tables (1)

Tables Icon

Table 1. Parameters of the Er:Yb:YAB cw microchip laser for different OM transmissions at incident pump power of 7.2 W

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

q ( r , z ) = 2 α ξ P i n π ϖ p 2 ( z ) e 2 r 2 ϖ p 2 ( z ) e α z
ϖ p 2 ( z ) = ϖ p 0 2 + θ 2 ( z z 0 ) 2

Metrics