Abstract

In this article, anti-reflection coatings (ARCs) with double-layer metal nanoparticles for Cu(In, Ga)Se2 (CIGS) solar cells were proposed. A study of three ARCs nanostructures (Ag-SiO2-Ag, Au-SiO2-Au and Au-SiO2-Ag structures) on CIGS solar cells was presented using the finite-difference time-domain method. Various ARC nanostructures with different metals (Au and Ag), metal nanoparticle radius, spacing layer (SiO2) thickness, and period (corresponding to the particle density) on CIGS solar cells were optimized in detail. The Au-SiO2-Ag structure was demonstrated to have a better anti-reflection ability when the thickness of the SiO2 layer is 45 nm, the radius of the metal particle is 14 nm, and the side length of the period is 41 nm. The results demonstrated that the reflectivity of the CIGS solar cells with the optimal ARCs structure was reduce by 83% compared with the case of no ARCs. And compared with the MgF2 anti-reflection film, the reflectivity was reduced by 37%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

Nasim Rezaei, Olindo Isabella, Zeger Vroon, and Miro Zeman
Opt. Express 26(2) A39-A53 (2018)

Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells

Chidozie Onwudinanti, Robin Vismara, Olindo Isabella, Louis Grenet, Fabrice Emieux, and Miro Zeman
Opt. Express 24(6) A693-A707 (2016)

Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?

Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang
Appl. Opt. 53(23) 5222-5229 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Gooch, Fresnel Reflection (Springer, 2011).
  2. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
    [Crossref]
  3. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36(30), 7826–7837 (1997).
    [Crossref] [PubMed]
  4. M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
    [Crossref]
  5. X. J. Xiao and J. L. Tu, “Analysis of reflectance performance of TiO2/SiO2 antireflection coating on GaAs substrate,” J. Synthetic Crystals 41(1), 69–73 (2012).
  6. Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).
  7. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [Crossref] [PubMed]
  8. M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
    [Crossref]
  9. N. D. Gupta and V. Janyani, “Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern,” IET Optoelectron. 11(5), 217–224 (2017).
    [Crossref]
  10. C. S. Solanki, and H. K. Singh, “Plasmonic-based light trapping for c-Si solar cell applications,” in Plasmonic-Based Light Trapping for c-Si Solar Cell Applications (Springer, 2017) pp. 157–176.
  11. Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
    [Crossref]
  12. F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
    [Crossref]
  13. Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
    [PubMed]
  14. S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
    [Crossref]
  15. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
    [Crossref]
  16. Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
    [Crossref]
  17. J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
    [Crossref]
  18. Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
    [Crossref]
  19. Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
    [Crossref]
  20. L. Yuan and F. Chen, “Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays,” AIP Adv. 3(9), 092120 (2013).
    [Crossref]
  21. L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
    [Crossref]
  22. D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
    [Crossref]
  23. C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [Crossref]
  24. C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
    [Crossref]
  25. Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).
  26. The AM1, 5G data was obtained from the website http://www.ampsmodeling.org/spectralData.html .
  27. S. Y. Kuo and M. Y. Hsieh, “Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures,” Nanoscale 6(13), 7553–7559 (2014).
    [Crossref] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  29. C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).
  30. Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
    [Crossref]
  31. Refractive index data for CdS and MgF2 were obtained from Filmetrics company official website, https://www.filmetrics.com/refractive-index-database .
  32. G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).
  33. M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
    [Crossref]
  34. Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).
  35. T. Yang, X. Wang, W. Liu, Y. Shi, and F. Yang, “Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells,” Opt. Express 21(15), 18207–18215 (2013).
    [Crossref] [PubMed]
  36. Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
    [Crossref]

2018 (5)

F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
[Crossref]

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

2017 (5)

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

N. D. Gupta and V. Janyani, “Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern,” IET Optoelectron. 11(5), 217–224 (2017).
[Crossref]

2016 (2)

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

2015 (1)

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

2014 (3)

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

S. Y. Kuo and M. Y. Hsieh, “Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures,” Nanoscale 6(13), 7553–7559 (2014).
[Crossref] [PubMed]

2013 (5)

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

T. Yang, X. Wang, W. Liu, Y. Shi, and F. Yang, “Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells,” Opt. Express 21(15), 18207–18215 (2013).
[Crossref] [PubMed]

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

L. Yuan and F. Chen, “Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays,” AIP Adv. 3(9), 092120 (2013).
[Crossref]

2012 (1)

X. J. Xiao and J. L. Tu, “Analysis of reflectance performance of TiO2/SiO2 antireflection coating on GaAs substrate,” J. Synthetic Crystals 41(1), 69–73 (2012).

2011 (2)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

2010 (1)

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

2008 (2)

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

2006 (2)

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

1997 (1)

Abdul Aziz, A.

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

Alsaedi, A.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Bai, Y.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

Bai, Y. M.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Baqir, M. A.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Bimenyimana, T.

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Chan, L. H.

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

Chang, F. G.

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

Chang, W. C.

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

Changtao, A. P.

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

Chen, F.

L. Yuan and F. Chen, “Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays,” AIP Adv. 3(9), 092120 (2013).
[Crossref]

Chen, J.

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Chen, J. H.

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

Chen, N.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

Chen, N. F.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Chen, S.

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Chen, Y.

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Choudhury, P. K.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Chuang, W. J.

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

Dai, R.

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

Dai, X. Q.

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

Deng, M. H.

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Ding, D.

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Doshi, P.

Duan, T.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Enrichi, F.

F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
[Crossref]

Fan, S.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Fu, Z.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Gao, M. M.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Gao, Z.

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Ghasemi, M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Gu, M.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Guli, M.

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Guli, M. N.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Guo, J.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Guo, Q.

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Guo, W.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Gupta, N. D.

N. D. Gupta and V. Janyani, “Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern,” IET Optoelectron. 11(5), 217–224 (2017).
[Crossref]

Hägglund, C.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Hayat, T.

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

He, H. Y.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

He, L. J.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Hsieh, M. Y.

S. Y. Kuo and M. Y. Hsieh, “Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures,” Nanoscale 6(13), 7553–7559 (2014).
[Crossref] [PubMed]

Huang, C. H.

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Huang, F.

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

Huangfu, H.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Ibrahim, K.

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

Jan, Y. L.

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Janyani, V.

N. D. Gupta and V. Janyani, “Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern,” IET Optoelectron. 11(5), 217–224 (2017).
[Crossref]

Jellison, G. E.

Jheng, J. Y.

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

Jia, B.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Kasemo, B.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

Kuo, S. Y.

S. Y. Kuo and M. Y. Hsieh, “Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures,” Nanoscale 6(13), 7553–7559 (2014).
[Crossref] [PubMed]

Li, C.

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

Li, D.

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

Li, G. L.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Li, J.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Li, M. M.

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

Li, N.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Li, Q. H.

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

Li, X.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Li, X. S.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Liang, S.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Lin, C. P.

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Liu, H.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Liu, M.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Liu, P.

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Liu, W.

T. Yang, X. Wang, W. Liu, Y. Shi, and F. Yang, “Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells,” Opt. Express 21(15), 18207–18215 (2013).
[Crossref] [PubMed]

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

Liu, Y.

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

Liu, Z.

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

Long, J. L.

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Luo, J.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Ma, S.

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Ma, X. C.

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

Ma, Y. W.

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

Majlis, B. Y.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Mohamed, M. A.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Pakhuruddin, M. Z.

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

Petersson, G.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Qiao, H.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Quandt, A.

F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
[Crossref]

Righini, G. C.

F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
[Crossref]

Rohatgi, A.

Sah, P. T.

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

Shan, Y.

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

Shi, X.

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Shi, Y.

Shih, Y. C.

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Stokes, N.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Tan, Z.

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Tang, Y.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Tu, J. L.

X. J. Xiao and J. L. Tu, “Analysis of reflectance performance of TiO2/SiO2 antireflection coating on GaAs substrate,” J. Synthetic Crystals 41(1), 69–73 (2012).

Wang, C.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Wang, F.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Wang, H.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Wang, J.

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Wang, P.

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

Wang, X.

Wang, Y.

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

Wu, Z. W.

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

Xiao, X. J.

X. J. Xiao and J. L. Tu, “Analysis of reflectance performance of TiO2/SiO2 antireflection coating on GaAs substrate,” J. Synthetic Crystals 41(1), 69–73 (2012).

Xing, X. W.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Xu, Z.

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Yan, L.

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Yang, B.

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Yang, F.

Yang, S.

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Yang, T.

Yang, Y.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Yao, J.

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Yao, J. X.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Yi, Y.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Yi, Z.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Yin, Z.

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Yin, Z. G.

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Yuan, H. W.

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Yuan, L.

L. Yuan and F. Chen, “Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays,” AIP Adv. 3(9), 092120 (2013).
[Crossref]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

Yusof, Y.

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

Zach, M.

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Zain, A. R. M.

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

Zhang, J.

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

Zhang, L. H.

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

Zhang, W.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

Zhao, Y.

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Zhu, D.

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

AIP Adv. (1)

L. Yuan and F. Chen, “Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays,” AIP Adv. 3(9), 092120 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett. 88(20), 201116 (2006).
[Crossref]

C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Appl. Surf. Sci. (2)

Y. Bai, Z. Gao, N. Chen, H. Liu, J. Yao, S. Ma, and X. Shi, “Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure,” Appl. Surf. Sci. 315(1), 1–7 (2014).
[Crossref]

Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, “Optical properties of Al-doped ZnO thin films by ellipsometry,” Appl. Surf. Sci. 254(10), 2922–2926 (2008).
[Crossref]

Bandaoti Xuebao (1)

Y. Bai, N. Chen, R. Dai, P. Wang, and A. P. Changtao, “Dispersion effect on double-layer anti-reflection coatings of GaAs solar cells,” Bandaoti Xuebao 27(4), 725–729 (2006).

ChemInform (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” ChemInform 34(16), 668–677 (2003).
[Crossref]

Chin. Phys. Lett. (1)

Y. W. Ma, L. H. Zhang, Z. W. Wu, and J. Zhang, “Optical properties of plasmon resonances with Ag/SiO2/Ag multi-layer composite nanoparticles,” Chin. Phys. Lett. 94(6), 107–109 (2010).

Crystals (Basel) (1)

C. H. Huang, W. J. Chuang, C. P. Lin, Y. L. Jan, and Y. C. Shih, “Deposition technologies of high-efficiency CIGS solar cells: development of two-step and co-evaporation processes,” Crystals (Basel) 8(7), 296 (2018).
[Crossref]

Curr. Appl. Phys. (1)

L. Yan, Y. Bai, B. Yang, N. Chen, Z. Tan, T. Hayat, and A. Alsaedi, “Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band,” Curr. Appl. Phys. 18(4), 484–490 (2018).
[Crossref]

Dyes Pigments (1)

J. Y. Jheng, P. T. Sah, W. C. Chang, J. H. Chen, and L. H. Chan, “Decahedral gold nanoparticles for enhancing performance of polymer solar cells,” Dyes Pigments 138, 83–89 (2017).
[Crossref]

IET Optoelectron. (1)

N. D. Gupta and V. Janyani, “Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern,” IET Optoelectron. 11(5), 217–224 (2017).
[Crossref]

J. Henan Normal Univ. (1)

C. Li, M. M. Li, X. Q. Dai, and F. G. Chang, “First-principles calculation of electronic structure and optical properties of CuInGaSe2/CuInAlSe2,” J. Henan Normal Univ. 39(2), 39–42 (2011).

J. Mater. Sci. Technol. (1)

D. Li, Z. Liu, Y. Wang, Y. Shan, and F. Huang, “Efficiency enhancement of Cu(In,Ga)Se2 solar cells by applying SiO2-PEG/PVP antireflection coatings,” J. Mater. Sci. Technol. 31(2), 229–234 (2015).
[Crossref]

J. Nanophotonics (1)

M. Ghasemi, P. K. Choudhury, M. A. Baqir, M. A. Mohamed, A. R. M. Zain, and B. Y. Majlis, “Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films,” J. Nanophotonics 11(4), 043505 (2017).
[Crossref]

J. Synthetic Crystals (1)

X. J. Xiao and J. L. Tu, “Analysis of reflectance performance of TiO2/SiO2 antireflection coating on GaAs substrate,” J. Synthetic Crystals 41(1), 69–73 (2012).

Nano (1)

S. Yang, P. Liu, D. Ding, Q. Guo, and Y. Chen, “Broadband absorption enhancement in μc-Si:H thin-film solar cells based on silver nanoparticle arrays,” Nano 12(3), 1750029 (2017).
[Crossref]

Nano Lett. (1)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Nanoscale (1)

S. Y. Kuo and M. Y. Hsieh, “Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures,” Nanoscale 6(13), 7553–7559 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo, and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377, 104–109 (2016).
[Crossref]

Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang, and Y. Tang, “Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayer films,” Opt. Commun. 390, 1–6 (2017).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

M. Guli, T. Bimenyimana, M. H. Deng, S. Chen, and J. L. Long, “Enhanced photoelectric performance of nanorod TiO2 film embedded with gold nanoparticles applied in dye sensitized solar cells studied by OptiFDTD,” Opt. Mater. 83, 200–206 (2018).
[Crossref]

Optik (Stuttg.) (1)

M. Z. Pakhuruddin, Y. Yusof, K. Ibrahim, and A. Abdul Aziz, “Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell,” Optik (Stuttg.) 124(22), 5397–5400 (2013).
[Crossref]

Part. Part. Syst. Charact. (1)

Y. Bai, L. Yan, Z. Yin, J. Wang, N. Chen, J. Chen, and Z. Tan, “Regular hexagonal gold nanoprisms fabricated by a physical method: toward use as ultrasensitive surface-enhanced raman scattering substrates,” Part. Part. Syst. Charact. 33(5), 254–260 (2016).
[Crossref]

Renew. Sustain. Energy Rev. (1)

F. Enrichi, A. Quandt, and G. C. Righini, “Plasmonic enhanced solar cells: summary of possible strategies and recent results,” Renew. Sustain. Energy Rev. 82, 2433–2439 (2018).
[Crossref]

Sci. Rep. (1)

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4(4), 4939 (2014).
[PubMed]

Science China, 2013 (1)

Y. M. Bai, J. Wang, Z. G. Yin, N. F. Chen, X. W. Xing, Z. Fu, J. X. Yao, N. Li, H. Y. He, and M. N. Guli, “Ag nanoparticles preparation and their light trapping performance,” Science China, 2013,  56(1), 109–114 (2013).

Sol. Energy (1)

Y. Bai, L. Yan, F. Wang, Y. Yang, H. Liu, Z. Yin, N. Chen, T. Hayat, A. Alsaedi, and Z. Tan, “Boosting photocurrent of GaInP top-cell for current-matched III-V monolithic multiple-junction solar cells via plasmonic decahedral-shaped Au nanoparticles,” Sol. Energy 166, 181–186 (2018).
[Crossref]

Wuli Xuebao (1)

G. L. Li, L. J. He, J. Li, X. S. Li, S. Liang, M. M. Gao, and H. W. Yuan, “Light absorption enhancement in polymer solar cells with nano-Ag,” Wuli Xuebao 62(19), 750–754 (2013).

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Refractive index data for CdS and MgF2 were obtained from Filmetrics company official website, https://www.filmetrics.com/refractive-index-database .

The AM1, 5G data was obtained from the website http://www.ampsmodeling.org/spectralData.html .

C. S. Solanki, and H. K. Singh, “Plasmonic-based light trapping for c-Si solar cell applications,” in Plasmonic-Based Light Trapping for c-Si Solar Cell Applications (Springer, 2017) pp. 157–176.

J. W. Gooch, Fresnel Reflection (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 CIGS solar cell and its ARC structure. (a) MgF2 coating (b) The solar cell structure consisting of ARCs. (c) Double-layer metal NPs coatings.
Fig. 2
Fig. 2 The square (c*c) structure unit of numerical calculation, where c is the space between two adjacent NPs.
Fig. 3
Fig. 3 Reflectivity depends on wavelength with different SiO2 layer thickness, when the side length of the period is 49 nm and the metal particle radius is 15 nm. (a) Ag-SiO2-Ag structure. (b) Au-SiO2-Au structure. (c) Au-SiO2-Ag structure. (d) The photon number of reflection with different SiO2 layer thickness for the three ARC structures.
Fig. 4
Fig. 4 The results of optical simulation calculation according to Eq. (1). The photon number of reflection varies with the side length of the period and the radius of metal particle when the thickness of SiO2 layer is 45 nm. (a) Ag-SiO2-Ag structure. (b) Au-SiO2-Au structure. (c) Au-SiO2-Ag structure.
Fig. 5
Fig. 5 Comparison of the five structures. The side length of the period for three structures (Ag-SiO2-Ag structure, Au-SiO2-Au and Au-SiO2-Ag structure) is 45 nm, 37 nm and 41 nm, respectively. And the radius of metal particle is 14 nm. (a) Dependence of reflectivity on the wavelength. (b) The photon number of reflection with different SiO2 layer thickness.
Fig. 6
Fig. 6 The field distribution on Au NPs of X-Y plane for the Au-SiO2-Ag structure: (a) λ = 395 nm; (b) λ = 665 nm. Other parameters are unchanged (the thickness of the SiO2 layer is 45 nm, the radius of the metal particle is 14 nm, and the side length of the period is 41 nm).
Fig. 7
Fig. 7 The mode distribution of X-Z plane for the Au-SiO2-Ag structure: (a) E: λ = 395 nm; (b) H: λ = 395 nm; (c) E: λ = 665 nm; (d) H: λ = 665 nm. Other parameters are unchanged (the thickness of the SiO2 layer is 45 nm, the radius of the metal particle is 14 nm, and the side length of the period is 41 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= 300nm 1200nm R( λ ) I AM1.5G dλ

Metrics