Abstract

We present a high link-performance multi-band microwave photonic filter based on stimulated Brillouin scattering (SBS) loss responses. The bandpass filter response is formed by suppressing the out-of-band signal using multiple broadened SBS loss responses, which avoids introducing additional noise in the passband. The low-noise SBS bandpass filter is implemented in an optimized high-performance MWP link, which enabled the demonstration of filter functionalities with a low noise figure, reconfigurability, and high resolution. A noise figure of 18.9 dB is achieved in the passband with a filter bandwidth of 0.3 GHz at a central frequency of 14 GHz, with a link gain of −13.9 dB and a spurious free dynamic range of 106 dB.Hz2/3. Bandwidth reconfiguration from 0.1 GHz to 1 GHz and multi-bandpass responses are also demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

David Marpaung, Blair Morrison, Mattia Pagani, Ravi Pant, Duk-Yong Choi, Barry Luther-Davies, Steve J. Madden, and Benjamin J. Eggleton
Optica 2(2) 76-83 (2015)

Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering

Yonatan Stern, Kun Zhong, Thomas Schneider, Ru Zhang, Yossef Ben-Ezra, Moshe Tur, and Avi Zadok
Photon. Res. 2(4) B18-B25 (2014)

Sharp tunable and additional noise-free optical filter based on Brillouin losses

Cheng Feng, Stefan Preussler, and Thomas Schneider
Photon. Res. 6(2) 132-137 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics (Wiley, 2015).
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  4. J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5(1), 15882 (2015), doi:.
    [Crossref] [PubMed]
  5. M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
    [Crossref]
  6. D. Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, “Nonlinear Integrated Microwave Photonics,” J. Lightwave Technol. 32(20), 3421–3427 (2014).
    [Crossref]
  7. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
    [Crossref] [PubMed]
  8. A. Wiatrek, S. Preussler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37(5), 930–932 (2012).
    [Crossref] [PubMed]
  9. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
    [Crossref] [PubMed]
  10. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76 (2015).
    [Crossref]
  11. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
    [Crossref]
  12. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
    [Crossref] [PubMed]
  13. B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact Brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
    [Crossref]
  14. E. A. Kittlaus, P. Kharel, N. T. Otterstrom, Z. Wang, and P. T. Rakich, “RF-photonic Filters via On-chip photonic-phononic emit-receive operations.” J. Lighwave Technol, vol. 1, 2018.
  15. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  16. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2(4), B18 (2014).
    [Crossref]
  17. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
    [Crossref] [PubMed]
  18. A. Choudhary, Y. Liu, D. Marpaung, B. J. Eggleton, “Brillouin filtering with enhanced noise performance and linearity using anti-stokes interactions,” CLEO: Science and innovation conference, 2018.
  19. C. Feng, S. Preussler, and T. Schneider, “Sharp tunable and additional noise-free optical filter based on Brillouin losses,” Photon. Res. 6(2), 132 (2018).
    [Crossref]
  20. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
    [Crossref]
  21. M. Choi, I. C. Mayorga, S. Preussler, and T. Schneider, “Investigation of gain dependent relative intensity noise in fiber Brillouin amplification,” J. Lightwave Technol. 34(16), 3930–3936 (2016).
    [Crossref]
  22. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).
  23. H. V. Roussell, M. D. Regan, J. L. Prince, C. H. Cox, J. X. Chen, W. K. Burns, G. E. Betts, and E. I. Ackerman, “Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulated link,” Microwave Photonics (MWP), IEEE International Topical Meeting on. vol. 1, pp. 84–87, Oct, 2007.
  24. Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
    [Crossref] [PubMed]
  25. Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41(22), 5306–5309 (2016).
    [Crossref] [PubMed]
  26. S. Iezekiel, Microwave Photonic Devices and Applications (Wiley, 2009).
  27. V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
    [Crossref]
  28. M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
    [Crossref]
  29. M. M. Howerton, G. K. Gopalakrishnan, R. P. Moeller, and W. K. Burns, "Low-biasing the cascaded downconverting fiber-optic link," in Optical Fiber Communications, OFC., San Jose, CA, USA, (1996), pp. 211–213.
  30. W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
    [Crossref]
  31. V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney, and F. Bucholtz, “Analysis of an Analog Fiber-Optic Link Employing a Low-Biased Mach-Zehnder Modulator Followed by an Erbium-Doped Fiber Amplifier,” J. Lightwave Technol. 27(12), 2013–2019 (2009).
    [Crossref]
  32. H. T. Friss, “Noise figures of radio receivers,” Proceeding of the IRE. vol. 32, no. 7, 1994.
  33. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Software-defined microwave photonic filter with high reconfigurable resolution,” Sci. Rep. 6(1), 35621 (2016).
    [Crossref] [PubMed]
  34. Keysight technologies selection guide, “Noise figure selection guide minimizing the uncertainties” (5989–8056EN. http://literature.cdn.keysight.com/litweb/pdf/5989-8056EN.pdf
  35. A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35(4), 846–854 (2017).
    [Crossref]

2018 (1)

2017 (4)

2016 (5)

2015 (3)

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76 (2015).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5(1), 15882 (2015), doi:.
[Crossref] [PubMed]

2014 (4)

2013 (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

2012 (2)

2011 (1)

2009 (2)

2006 (1)

1996 (1)

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

1993 (1)

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
[Crossref]

Aryanfar, I.

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Ben-Ezra, Y.

Bucholtz, F.

Burns, W. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Buttner, T. F. S.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Byrnes, A.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

Casas-Bedoya, A.

B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact Brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Chang, W. S. C.

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
[Crossref]

Choi, D.-Y.

Choi, M.

Choudhary, A.

Devgan, P. S.

Diehl, J. F.

V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
[Crossref]

Eggleton, B. J.

A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35(4), 846–854 (2017).
[Crossref]

Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
[Crossref] [PubMed]

B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact Brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
[Crossref]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41(22), 5306–5309 (2016).
[Crossref] [PubMed]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76 (2015).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, “Nonlinear Integrated Microwave Photonics,” J. Lightwave Technol. 32(20), 3421–3427 (2014).
[Crossref]

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[Crossref] [PubMed]

Fan, S.

Farwell, M. L.

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
[Crossref]

Feng, C.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Fok, M. P.

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5(1), 15882 (2015), doi:.
[Crossref] [PubMed]

Friss, H. T.

H. T. Friss, “Noise figures of radio receivers,” Proceeding of the IRE. vol. 32, no. 7, 1994.

Ge, J.

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5(1), 15882 (2015), doi:.
[Crossref] [PubMed]

Godinez, M. E.

Gopalakrishnan, G. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Hotten, J.

Hu, W.

Huber, D. R.

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
[Crossref]

Jamshidi, K.

Jaouën, Y.

Kabakova, I. V.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref] [PubMed]

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Li, E.

Liu, Y.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Marpaung, D.

B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact Brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
[Crossref]

Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
[Crossref] [PubMed]

A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35(4), 846–854 (2017).
[Crossref]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

Y. Liu, D. Marpaung, A. Choudhary, and B. J. Eggleton, “Lossless and high-resolution RF photonic notch filter,” Opt. Lett. 41(22), 5306–5309 (2016).
[Crossref] [PubMed]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76 (2015).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, “Nonlinear Integrated Microwave Photonics,” J. Lightwave Technol. 32(20), 3421–3427 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Mayorga, I. C.

McKinney, J. D.

Merklein, M.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Mitchell, A.

Moeller, R. P.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Morrison, B.

B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, and B. J. Eggleton, “Compact Brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
[Crossref]

A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” J. Lightwave Technol. 35(4), 846–854 (2017).
[Crossref]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76 (2015).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, “Nonlinear Integrated Microwave Photonics,” J. Lightwave Technol. 32(20), 3421–3427 (2014).
[Crossref]

Nguyen, T. G.

Ortega, B.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref] [PubMed]

Pagani, M.

Pant, R.

Pastor, D.

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Poulton, C. G.

Preussler, S.

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref] [PubMed]

Ren, G.

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Schneider, T.

Shahnia, S.

Singley, J. M.

V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
[Crossref]

Stern, Y.

Sunderman, C. E.

V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
[Crossref]

Tur, M.

Urick, V. J.

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Vu, K.

Wei, W.

Wiatrek, A.

Williams, K. J.

V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
[Crossref]

Yao, J.

Yi, L.

Zadok, A.

Zarifi, A.

Zhang, R.

Zhong, K.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach Zehnder modulator,” IEEE Photonics Technol. Lett. 5(7), 779–782 (1993).
[Crossref]

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

J. Lightwave Technol. (6)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7, 506–514 (2013).

Nat. Commun. (1)

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Photonics News (1)

V. J. Urick, J. F. Diehl, J. M. Singley, C. E. Sunderman, and K. J. Williams, “Long-reach analog photonics for military applications,” Opt. Photonics News 25(10), 36–43 (2014).
[Crossref]

Opt. Quantum Electron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Optica (2)

Photon. Res. (2)

Sci. Rep. (2)

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Software-defined microwave photonic filter with high reconfigurable resolution,” Sci. Rep. 6(1), 35621 (2016).
[Crossref] [PubMed]

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5(1), 15882 (2015), doi:.
[Crossref] [PubMed]

Other (8)

A. Choudhary, Y. Liu, D. Marpaung, B. J. Eggleton, “Brillouin filtering with enhanced noise performance and linearity using anti-stokes interactions,” CLEO: Science and innovation conference, 2018.

E. A. Kittlaus, P. Kharel, N. T. Otterstrom, Z. Wang, and P. T. Rakich, “RF-photonic Filters via On-chip photonic-phononic emit-receive operations.” J. Lighwave Technol, vol. 1, 2018.

V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics (Wiley, 2015).

Keysight technologies selection guide, “Noise figure selection guide minimizing the uncertainties” (5989–8056EN. http://literature.cdn.keysight.com/litweb/pdf/5989-8056EN.pdf

H. T. Friss, “Noise figures of radio receivers,” Proceeding of the IRE. vol. 32, no. 7, 1994.

H. V. Roussell, M. D. Regan, J. L. Prince, C. H. Cox, J. X. Chen, W. K. Burns, G. E. Betts, and E. I. Ackerman, “Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulated link,” Microwave Photonics (MWP), IEEE International Topical Meeting on. vol. 1, pp. 84–87, Oct, 2007.

S. Iezekiel, Microwave Photonic Devices and Applications (Wiley, 2009).

M. M. Howerton, G. K. Gopalakrishnan, R. P. Moeller, and W. K. Burns, "Low-biasing the cascaded downconverting fiber-optic link," in Optical Fiber Communications, OFC., San Jose, CA, USA, (1996), pp. 211–213.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the operation principle of the SBS-losses-based filter. (a) RF response of single bandpass (right) at probe created from pump control (left); AWG comb lines generation (top left), SBS loss responses in optical domain (top right) by single side band modulation on upper side band (USB) with lower side band (LSB) and carrier suppression. (b) Multiple bandpass filter formation at probe created from multiple comb lines from pump by adding comb lines group (3) using AWG (top left) therefore adding SBS loss responses (top right).
Fig. 2
Fig. 2 Schematic of the high-performance microwave photonic link that can accommodate SBS to implement MWP filter. This filter is treated as a black box interfaced with one RF input port and one RF output port. The RF signals are processed by an optical link employing an intensity modulator with SBS process in the optical fiber. In optical link, long fiber spool and pump signal can be considered to implement the filter shape control. IM: intensity modulator; PD: photodetector.
Fig. 3
Fig. 3 Schematic of SBS losses based filter experiment setup. Top-half of the setup is the probe. The bottom side of the figure shows the pump of the filter setup including laser diode (LD), polarization controller (PC2, PC3), dual parallel Mach Zehnder modulator (DPMZM) or IQ modulator (IQM), arbitrary waveform generator (AWG), low noise amplifier (LNA), erbium-doped fiber amplifier (EDFA), high resolution optical spectrum analyzer (OSA), circulator (C2), and a fiber Bragg grating filter (FBG).
Fig. 4
Fig. 4 Link gain, Noise Figure and Spurious-free Dynamic Range vs. Frequency of the microwave photonic link.
Fig. 5
Fig. 5 Filter broadening experiment results from 0.1 GHz to 0.5 GHz at a central frequency of 14 GHz (a) Link gain (dB) vs. frequency (b) Noise figure (dB) vs. frequency.
Fig. 6
Fig. 6 Filter broadening experiment results from 0.1 GHz to 0.5 GHz and noise figure in the passband at central frequencies between 9 GHz and 15 GHz. (a) Link gain (dB) vs. frequency. (b) Noise figure (dB) vs. frequency.
Fig. 7
Fig. 7 Filter broadening experiment results from 100 MHz to 1 GHz and noise figure. (a) Link gain (dB) vs. Frequency. (b) Noise figure (dB) vs. Frequency.
Fig. 8
Fig. 8 Bandpass filter demonstration with interference signal

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NF= P N G+174
SFD R n = n1 n (II P n NF+174)=>SFD R 3 = 2 3 (II P 3 NF+174)

Metrics