Abstract

We present an unconventional yet simple and effective surface re-engineering method to hydrophilize the polydimethylsiloxane (PDMS) surface for the direct fabrication of a flexible and stretchable guided mode resonance (GMR) sensor. It enables us to directly spin coat photoresist as a planar waveguide on a PDMS substrate without any oxygen or UV treatment. To fabricate a GMR structure, a 1D grating is surface-patterned on this coated photoresist layer through Lloyd mirror interference lithography. A sensing experiment is performed with the obtained GMR structure and is validated by FDTD simulations. The sensor performance is consistent over repeated measurements, making the PDMS surface highly resistant to hydrophobic recovery.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stretchable photo sensor using perylene/graphene composite on ridged polydimethylsiloxane substrate

Shawkat Ali, Jinho Bae, and Chong Hyun Lee
Opt. Express 23(24) 30583-30591 (2015)

Optical guided mode resonance filter on a flexible substrate

Peter Reader-Harris, Armando Ricciardi, Thomas Krauss, and Andrea Di Falco
Opt. Express 21(1) 1002-1007 (2013)

Facile metal transfer method for fabricating unconventional metamaterial devices

Mei Zhu and Chengkuo Lee
Opt. Mater. Express 5(4) 733-741 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  3. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [Crossref] [PubMed]
  4. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [Crossref] [PubMed]
  5. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19(12), 11330–11339 (2011).
    [Crossref] [PubMed]
  6. S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
    [Crossref] [PubMed]
  7. W.-K. Kuo, N.-C. Huang, H.-P. Weng, and H.-H. Yu, “Tunable phase detection sensitivity of transmitted-type guided-mode resonance sensor in a heterodyne interferometer,” Opt. Express 22(19), 22968–22973 (2014).
    [Crossref] [PubMed]
  8. P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
    [Crossref] [PubMed]
  9. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
    [Crossref] [PubMed]
  10. K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
    [Crossref]
  11. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
    [Crossref] [PubMed]
  12. N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
    [Crossref]
  13. S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
    [Crossref]
  14. Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
    [Crossref]
  15. K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
    [Crossref] [PubMed]
  16. A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
    [Crossref]
  17. J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
    [Crossref]
  18. L. R. Paez and J. Matousek, “Preparation of Tio~ 2 sol-gel layers on glass,” Ceram. Silik. 47, 28–31 (2003).
  19. W. Yu, X. Yuan, N. Ngo, W. Que, W. Cheong, and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing,” Opt. Express 10(10), 443–448 (2002).
    [Crossref] [PubMed]
  20. S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
    [Crossref]
  21. B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
    [Crossref] [PubMed]
  22. K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
    [Crossref]
  23. R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
    [Crossref]
  24. A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
    [Crossref] [PubMed]
  25. R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
    [Crossref]
  26. P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
    [Crossref] [PubMed]
  27. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Process (Elsevier, 2010), pp.442–444.
  28. J. Berthier, Micro-drops and digital microfluidics. (William Andrew, 2012) pp.36–43.
  29. S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
    [Crossref]
  30. Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .
  31. M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .

2017 (1)

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
[Crossref] [PubMed]

2016 (1)

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

2014 (3)

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

W.-K. Kuo, N.-C. Huang, H.-P. Weng, and H.-H. Yu, “Tunable phase detection sensitivity of transmitted-type guided-mode resonance sensor in a heterodyne interferometer,” Opt. Express 22(19), 22968–22973 (2014).
[Crossref] [PubMed]

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

2013 (4)

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

2012 (7)

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
[Crossref] [PubMed]

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
[Crossref]

2011 (4)

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19(12), 11330–11339 (2011).
[Crossref] [PubMed]

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

2010 (2)

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

2003 (1)

L. R. Paez and J. Matousek, “Preparation of Tio~ 2 sol-gel layers on glass,” Ceram. Silik. 47, 28–31 (2003).

2002 (1)

2001 (1)

1993 (1)

1992 (1)

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Amjadi, M.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Bacharouche, J.

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Bao, Z.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Barman, S.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Biswal, S. L.

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

Brault, N. D.

A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
[Crossref] [PubMed]

Braun, J. M.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Cauich-Rodríguez, J. V.

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

Chen, C. V. H.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Cheong, W.

Chia, J.

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

Chiang, C.-L.

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

Chin, J.

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

Choi, C.

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

Collins, J. L.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Cruz-Barba, L. E.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Cui, R. R.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Cunningham, B.

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

Damman, P.

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Denes, F. S.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Deng, L. Z.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Dubois, P.

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Foland, S.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Gillmor, S. D.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Haidara, H.

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Hemmilä, S.

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

Hilgenberg, J. D.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Hirasaki, G. J.

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

Huang, N.-C.

Jiang, S.

A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
[Crossref] [PubMed]

Jiang, Z.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Joseph, J.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
[Crossref] [PubMed]

Kaja, S.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Kallio, P.

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

Keefe, A. J.

A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
[Crossref] [PubMed]

King, W.

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

Koh, K.-S.

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

Koudriachov, V.

Koulen, P.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Kreutzer, J.

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

Kunemann, P.

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Kuo, W.-K.

Lagally, M. G.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Larson, B. J.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Lee, J.-B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Lee, K.-F.

K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
[Crossref]

Lee, M.-Y.

K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
[Crossref]

Lee, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Lei, K. F.

K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
[Crossref]

Li, F.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Li, P.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Li, Y.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Liang, C.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Ma, K.

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

Magnusson, R.

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
[Crossref] [PubMed]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Mannsfeld, S. C.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Matousek, J.

L. R. Paez and J. Matousek, “Preparation of Tio~ 2 sol-gel layers on glass,” Ceram. Silik. 47, 28–31 (2003).

Meyer, F.

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Muir, B. V.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Ngo, N.

Nguyen, H.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Olivier, A.

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Paez, L. R.

L. R. Paez and J. Matousek, “Preparation of Tio~ 2 sol-gel layers on glass,” Ceram. Silik. 47, 28–31 (2003).

Park, I.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Pichitpajongkit, A.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Privorotskaya, N.

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

Que, W.

Raquez, J. M.

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Reese, C.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Rivera, J.

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

Roucoules, V.

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Ryu, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Sahoo, P. K.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
[Crossref] [PubMed]

Sarkar, S.

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
[Crossref] [PubMed]

Savage, D. E.

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Sha, G. H.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Shah, A. A.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Shao, G.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Shen, M.

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

Shi, W. B.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Shi, X.

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

Sokolov, A. N.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Song, Y.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Stoltenberg, R. M.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Su, Y.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Sun, Y.

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Swedlove, B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Tee, B. C.

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Tibuleac, S.

Uddin, M. J.

Vallat, M. F.

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Wan, H.

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Wang, S.

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wang, S. S.

Wawro, D.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Wei, X.

Weiss, S. M.

Wen, S.

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

Weng, H.-P.

Wu, D.

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Yang, H. P.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Yu, H.-H.

Yu, W.

Yuan, X.

Zhang, C. H.

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Zhang, R.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Zhang, Y.

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

Zhao, B.

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Zhao, J.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Zhao, X.

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

Zheng, F.

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

Zimmerman, S.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, and G. Shao, “Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells,” ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016).
[Crossref] [PubMed]

ACS Nano (1)

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Appl. Surf. Sci. (1)

S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Appl. Surf. Sci. 258(24), 9864–9875 (2012).
[Crossref]

Biomacromolecules (1)

A. J. Keefe, N. D. Brault, and S. Jiang, “Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer,” Biomacromolecules 13(5), 1683–1687 (2012).
[Crossref] [PubMed]

Ceram. Silik. (1)

L. R. Paez and J. Matousek, “Preparation of Tio~ 2 sol-gel layers on glass,” Ceram. Silik. 47, 28–31 (2003).

J. Appl. Polym. Sci. (1)

S. Wen, F. Zheng, M. Shen, and X. Shi, “Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility,” J. Appl. Polym. Sci. 128(6), 3807–3813 (2013).
[Crossref]

J. Biomed. Opt. (1)

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

K. Ma, J. Rivera, G. J. Hirasaki, and S. L. Biswal, “Wettability control and patterning of PDMS using UV-ozone and water immersion,” J. Colloid Interface Sci. 363(1), 371–378 (2011).
[Crossref] [PubMed]

J. Membr. Sci. (1)

R. Zhang, Y. Su, X. Zhao, Y. Li, J. Zhao, and Z. Jiang, “A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine),” J. Membr. Sci. 470, 9–17 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Langmuir (1)

B. J. Larson, S. D. Gillmor, J. M. Braun, L. E. Cruz-Barba, D. E. Savage, F. S. Denes, and M. G. Lagally, “Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments,” Langmuir 29(42), 12990–12996 (2013).
[Crossref] [PubMed]

Microelectron. Eng. (1)

K. F. Lei, K.-F. Lee, and M.-Y. Lee, “Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement,” Microelectron. Eng. 99, 1–5 (2012).
[Crossref]

Micromachines (Basel) (1)

K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, “Quantitative studies on PDMS-PDMS interface bonding with piranha solution and its swelling effect,” Micromachines (Basel) 3(2), 427–441 (2012).
[Crossref]

Nat. Mater. (1)

S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Prog. Polym. Sci. (1)

A. Olivier, F. Meyer, J. M. Raquez, P. Damman, and P. Dubois, “Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces,” Prog. Polym. Sci. 37(1), 157–181 (2012).
[Crossref]

Quantum Electron. (1)

R. R. Cui, L. Z. Deng, W. B. Shi, H. P. Yang, G. H. Sha, and C. H. Zhang, “Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator,” Quantum Electron. 41(2), 139–144 (2011).
[Crossref]

Sci. Rep. (1)

P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7(1), 7607 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

N. Privorotskaya, C. Choi, B. Cunningham, and W. King, “'Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161(1-2), 66–71 (2010).
[Crossref]

J. Bacharouche, H. Haidara, P. Kunemann, M. F. Vallat, and V. Roucoules, “Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere,” Sens. Actuators A Phys. 197, 25–29 (2013).
[Crossref]

Surf. Interface Anal. (1)

Y. Chen, Y. Sun, B. Zhao, H. Wan, and D. Wu, “Surface modification of titanium by using plasma‐induced graft‐polymerization,” Surf. Interface Anal. 43(13), 1566–1574 (2011).
[Crossref]

Other (4)

Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .

M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .

D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Process (Elsevier, 2010), pp.442–444.

J. Berthier, Micro-drops and digital microfluidics. (William Andrew, 2012) pp.36–43.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) A guided-mode resonant structure in operational mode. Selective incident wavelength on diffraction propagates and couples-out along reflection/ transmission regime to form resonant peak/ dip as seen in the corresponding spectra. (b) Surface engineering of PDMS substrate to attain hydrophilicity. PDMS backbone in the surface is altered using chemically produced atomic oxygen. Final structure shows several branched polyethyleneimine on the activated surface (identical groups distinguished by color) to enhance hydrophilicity.
Fig. 2
Fig. 2 (a) Contact angle measurement PDMS substrate before and after hydrophilization showing clear change from 113° to 53.7° after surface modification. (b) FTIR spectra of treated and untreated samples to detect the presence of PEI
Fig. 3
Fig. 3 (a) Experimental setup for Lloyd’s mirror based laser interference lithography (b) AFM image of IL induced grating on resist-coated PDMS substrate along with height profile. (c) SEM image with 45° tilt stage showing grating-waveguide structure in cross-section. (d) Actual image of the fabricated device displaying diffracted colors at different angles in reflection.
Fig. 4
Fig. 4 (a) Experimental setup to study transmission characteristics of the fabricated device as a RI sensor. (b) XZ view of 2D FDTD simulation model for studying similar transmission response. (c) Straight curves show experimentally obtained normalized GMR dips for air (black) and water (red). Dashed curves show similar dips for simulation model on change of background RI from 1.00 (black) to 1.33 (red).
Fig. 5
Fig. 5 (a) Plotted spectrometer scope-mode data of the fabricated GMR sample with air as cover medium, measured over days. (b) Spectrometer scope-mode data of the fabricated GMR sample in air showing the splitting of the resonant dip for a slight tilt of θ ~2° (bottom) from the case of normal incidence θ = 0°(above).
Fig. 6
Fig. 6 Real and imaginary part of refractive indices of (a) AZ 1518 positive photoresist extrapolated from known values at certain wavelengths, (b) PDMS, fitted within Lumerical FDTD solver for scan range 500-1000 nm from data sheet obtained from ref [31].
Fig. 7
Fig. 7 (a) Simulative studies of the modeled photoresist based GMR structure on PDMS substrate (with Λ = 522 nm and d = 300 nm) showing (a) Electric field profile on resonance at 770.54 nm and (b) Off-resonance at 760 nm. (c) Variation of λR with change in Λ for a constant d = 300 nm. (d) Variation of λR with change in d for a constant Λ = 522 nm. Increase in waveguide thickness allows multiple resonant modes within the structure. In all the studies, nc = 1.00.
Fig. 8
Fig. 8 A large area macroscopic SEM image of the fabricated sample with formation of cracks over the photoresist surface. Inset shows zoomed crack-free region with uniform grating formation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H 2 O 2 +NaOCl O 2 ( Δ 1 g )+NaCl+ H 2 O

Metrics