Abstract

Bulk polymer composites have been investigated in a two-beam interference exposure system of titanocene (Irgacure 784, BASF) (TI) molecules dispersed in poly(methyl methacrylate) (PMMA) substrates, which are created through an optimized three-step thermo-polymerization method, at a wavelength of 532 nm. As a property of PMMA photopolymers, the dark enhancement of grating formation is observed, which mainly corresponds to the diffusion of TI molecules. We also examine the influences of dark enhancement on Bragg angular selectivity that shifts after a long-time dark reaction. Single grating under continuous exposure was recorded in TI/PMMA photopolymers with a diffraction efficiency of 74% and response time of 20 s. An enhanced multiplexed grating was also obtained after a completely dark reaction with the cumulative grating strength of 6.88. Compared to bulk PQ/PMMA photopolymers in millimeter magnitude, TI/PMMA photopolymers are more competitive for further research on volume holographic memory storage.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Mater. Express 8(6) 1441-1453 (2018)

Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer

Chengmingyue Li, Liangcai Cao, Qingsheng He, and Guofan Jin
Opt. Express 22(5) 5017-5028 (2014)

Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer

Peng Liu, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Express 26(6) 6993-7004 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U. Mahilny, A. Trofimova, S. Nazarov, A. Tolstik, R. Heintzmann, and E. Tolstik, “Highly concentrated phenanthrenequinone–polymethylmethacrylate composite for thick reflection holograms recording at 532 nm,” Opt. Mater. Express 6(11), 3427–3437 (2016).
    [Crossref]
  2. A. Trofimova, S. Nazarov, A. Tolstik, U. Mahilniy, E. Tolstik, and R. Heintzmann, “Multiplexed holograms in phenanthrenequinone–polymethylmethacrylate composite for microscopic applications,” Opt. Mater. Express 7(5), 1446–1452 (2017).
    [Crossref]
  3. S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25(20), 23726–23737 (2017).
    [Crossref] [PubMed]
  4. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42(2), 346–349 (2017).
    [Crossref] [PubMed]
  5. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  6. Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
    [Crossref] [PubMed]
  7. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
    [Crossref] [PubMed]
  8. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
    [Crossref]
  9. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
    [Crossref]
  10. P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
    [Crossref] [PubMed]
  11. P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
    [Crossref] [PubMed]
  12. W. S. Kim, Y. C. Jeong, and J. K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
    [Crossref] [PubMed]
  13. Y. N. Hsiao, K. Y. Hsu, and S. H. Lin, “An irgacure 784 doped photopolymers for display holograms recording at 532 nm,” Opt. Mem. Neural. Networks 18(4), 253–259 (2009).
    [Crossref]
  14. S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
    [Crossref]
  15. N. Suzuki and Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
    [Crossref]
  16. S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
    [Crossref]
  17. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
    [Crossref]
  18. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
    [Crossref] [PubMed]
  19. P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions,” Opt. Mater. Express 8(6), 1441–1453 (2018).
    [Crossref]
  20. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002).
    [Crossref] [PubMed]
  21. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [Crossref] [PubMed]
  22. D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
    [Crossref]
  23. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
    [Crossref]
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  25. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
    [Crossref]
  26. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett. 31(10), 1402–1404 (2006).
    [Crossref] [PubMed]
  27. C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
    [Crossref] [PubMed]
  28. J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
    [Crossref]
  29. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
    [Crossref] [PubMed]
  30. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
    [Crossref]
  31. H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
    [Crossref]
  32. Y. F. Chen, J. H. Lin, S. H. Lin, K. Y. Hsu, and W. T. Whang, “PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption,” Opt. Lett. 38(12), 2056–2058 (2013).
    [Crossref] [PubMed]
  33. C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
    [Crossref] [PubMed]

2018 (4)

2017 (5)

2016 (1)

2014 (2)

2013 (1)

2011 (5)

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

2010 (4)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

2009 (5)

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Y. N. Hsiao, K. Y. Hsu, and S. H. Lin, “An irgacure 784 doped photopolymers for display holograms recording at 532 nm,” Opt. Mem. Neural. Networks 18(4), 253–259 (2009).
[Crossref]

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

2006 (3)

2005 (1)

2002 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Bachelot, R.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Bouhelier, A.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Cao, L.

Chang, F.

Chen, Y. F.

Chi, S.

Chikama, K.

Cho, S. L.

Choi, Y.-S.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

Chou, S. F.

Deeb, C.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Ecoffet, C.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Endoh, Y.

Fan, F.

Furushima, K.

Gallego, S.

Gleeson, M. R.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

He, Q.

Heintzmann, R.

Heo, Y.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

Hong, Y.

Hsiao, Y. N.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Y. N. Hsiao, K. Y. Hsu, and S. H. Lin, “An irgacure 784 doped photopolymers for display holograms recording at 532 nm,” Opt. Mem. Neural. Networks 18(4), 253–259 (2009).
[Crossref]

Hsu, K. Y.

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

Y. F. Chen, J. H. Lin, S. H. Lin, K. Y. Hsu, and W. T. Whang, “PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption,” Opt. Lett. 38(12), 2056–2058 (2013).
[Crossref] [PubMed]

Y. N. Hsiao, K. Y. Hsu, and S. H. Lin, “An irgacure 784 doped photopolymers for display holograms recording at 532 nm,” Opt. Mem. Neural. Networks 18(4), 253–259 (2009).
[Crossref]

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Jeong, Y. C.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
[Crossref] [PubMed]

Jiang, Y.

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

Jiang, Y.-Y.

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

Jin, G.

Kang, G.

Kelly, J. V.

Kim, S. I.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

Kim, W. S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Lee, S.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

Li, C.

Li, L.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Li, X.

Li, Z.

Lin, C. M.

Lin, J. H.

Lin, S. H.

Lion, Y.

Liu, H.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

Liu, P.

Liu, S.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Liu, Y.

Luo, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Luo, Y.

Mahilniy, U.

Mahilny, U.

Moothanchery, M.

Moreau, V.

Naydenova, I.

Nazarov, S.

Neipp, C.

Nohara, Y.

O’Neill, F. T.

Ortuno, M.

Park, J. K.

Park, J.-K.

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

Plain, J.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Renotte, Y.

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Sheridan, J. T.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[Crossref]

Singh, V. R.

Song, Q.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Soppera, O.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

Sun, C. C.

Sun, X.

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions,” Opt. Mater. Express 8(6), 1441–1453 (2018).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

Sun, X.-D.

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

Sung, K. B.

Suzuki, N.

Tan, X.

Toal, V.

Tolstik, A.

Tolstik, E.

Tomita, Y.

Trofimova, A.

Vyas, S.

Wang, H.

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

Wang, J.

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Wang, L.

Wang, P. H.

Wang, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Wang, W.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Whang, W. T.

Wong, J. M.

Yang, C. H.

Yang, T. H.

Yu, D.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

Yu, Y. W.

Zang, J.

Zhao, Y.

Zhou, K.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[Crossref]

Appl. Phys. Lett. (1)

N. Suzuki and Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006).
[Crossref]

Bell Labs Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Chin. Phys. B (1)

D. Yu, H. Wang, H. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, “Dark diffusional enhancement of holographic multiplexed gratings in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 20(11), 114217 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc. 133(27), 10535–10542 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resinphotopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

J. Mater. Chem. (1)

S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1114 (2009).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Opt. Express (11)

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
[Crossref] [PubMed]

S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25(20), 23726–23737 (2017).
[Crossref] [PubMed]

S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
[Crossref] [PubMed]

Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[Crossref] [PubMed]

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Opt. Mater. Express (3)

Opt. Mem. Neural. Networks (1)

Y. N. Hsiao, K. Y. Hsu, and S. H. Lin, “An irgacure 784 doped photopolymers for display holograms recording at 532 nm,” Opt. Mem. Neural. Networks 18(4), 253–259 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Absorption spectra of TI/PMMA and PQ/PMMA photopolymers; (b) two-wave coupling interference system, PBS, polarization beam splitter.
Fig. 2
Fig. 2 (a) Comparisons of diffraction efficiency between TI/PMMA and PQ/PMMA with the increment of exposure flux; (b) the temporal evolution of refractive index modulation in TI/PMMA samples.
Fig. 3
Fig. 3 (a) The dark enhancement of single transmission grating with different exposure flux, (b) comparisons of dark enhancement between TI/PMMA and PQ/PMMA polymers.
Fig. 4
Fig. 4 (a) Time constants in dark diffusional process; (b) diffusion coefficient and fitting curves of TI molecules.
Fig. 5
Fig. 5 (a) Bragg angular selectivity shifting of TI/PMMA polymers after exposure; (b) comparisons of Bragg angle maximum shifting between PQ/PMMA and TI/PMMA polymers.
Fig. 6
Fig. 6 Diffraction efficiencies of multiplexed gratings with time intervals of (a) 0 s, (b) 300 s, (c) 600 s, and (d) 900 s.
Fig. 7
Fig. 7 (a) The dynamic range increased by consecutive exposure; (b) the temporal evolution of the dynamic range.
Fig. 8
Fig. 8 The scattering ratio of TI/PMMA and PQ/PMMA.

Tables (1)

Tables Icon

Table 1 Comparisons of Holographic Parameters on Different Kind of Bulk Photopolymers

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2Λsinβ=k λ 2 ,
Λ= λ 1 sin α 1 +sin α 2 ,
TI+hv R r R i [TI] *
PMMA/MMA+ [TI] * TI-nMMA
[TI] * TI +By-products
TI +2PMMA/MMA nMMA-TI-nMMA
η= sin 2 ( Δnπd λcos θ )
[TI](t) t = R i
[TI](t)= [TI] 0 exp(f k d t)= [TI] 0 exp(E/ E τ ),
[Residual](t)= [TI] 0 [TI](t)= [TI] 0 [1exp(E/ E τ )]
η(t) = η sat [1exp(t/τ)]+ C 1 ,
D([TI](t))= D 0 exp( C 1 [Residual](t))+ C 2 ,
M#= i=1 N η i ,
C gs =Aexp(4 π 2 D TI t/ Λ 2 )Bexp(4 π 2 D pro t/ Λ 2 ),
S(t)=( 1I(t)/ I 0 )×100%,

Metrics