Abstract

A multicore fiber (MCF) based temperature sensor was fabricated and packaged into a stainless-steel tube to protect the bare-fiber, and it offers a commercial friendly form factor. The sensor displayed a periodic supermode interference pattern that red-shifts with increasing temperature, which was used to calibrate the sensor. Additionally, an economical photodiode-based interrogator was fabricated from off-the-shelf parts and used to calibrate the sensor in both liquid and gas mediums. The response time to changes in temperature for the MCF sensor was found to be an order of magnitude faster than a thermocouple of identical diameter, 0.09 s compared to >1.0 s, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

Directional torsion and temperature discrimination based on a multicore fiber with a helical structure

Hailiang Zhang, Zhifang Wu, Perry Ping Shum, Xuguang Shao, Ruoxu Wang, Xuan Quyen Dinh, Songnian Fu, Weijun Tong, and Ming Tang
Opt. Express 26(1) 544-551 (2018)

High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity

Guigen Liu, Ming Han, and Weilin Hou
Opt. Express 23(6) 7237-7247 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
    [Crossref] [PubMed]
  2. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
    [Crossref] [PubMed]
  3. M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
    [Crossref] [PubMed]
  4. E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
    [Crossref] [PubMed]
  5. X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  6. P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
    [Crossref] [PubMed]
  7. J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
    [Crossref] [PubMed]
  8. J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
    [Crossref] [PubMed]
  9. S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
    [Crossref] [PubMed]
  10. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  11. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
    [Crossref] [PubMed]
  12. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
    [Crossref] [PubMed]
  13. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [Crossref] [PubMed]
  14. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]
  15. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  16. A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
    [Crossref]
  17. A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
    [Crossref] [PubMed]
  18. J. Villatoro, O. Arrizabalaga, E. Antonio-Lopez, J. Zubia, and I. S. de Ocáriz, “Multicore fiber sensors,” in Optical Fiber Communications Conference and Exhibition (OFC), 2017 (IEEE, 2017), pp. 1–3.
  19. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
    [Crossref] [PubMed]
  20. M. Duff and J. Towey, “Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility,” Analog Dialogue 44(10), 1–6 (2010).
  21. Omega Engineering, “Thermocouple Response Time” www.omega.com/techref/ThermocoupleResponseTime.html , Accessed 9/27/2018.

2018 (1)

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

2017 (3)

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

2016 (3)

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

2015 (1)

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

2014 (3)

2013 (3)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
[Crossref] [PubMed]

2012 (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

M. Duff and J. Towey, “Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility,” Analog Dialogue 44(10), 1–6 (2010).

2009 (1)

2007 (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Ahmad, H.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Ali, M. M.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Amezcua-Correa, R.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

Antonio-Lopez, E.

Antonio-Lopez, J. E.

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

Arrizabalaga, O.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Bartelt, H.

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Coulas, D.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Coviello, G.

Ding, H.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Duff, M.

M. Duff and J. Towey, “Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility,” Analog Dialogue 44(10), 1–6 (2010).

Durana, G.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Eznaveh, Z. S.

Farrell, G.

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

Favero, F. C.

Ferreira, M. S.

Finazzi, V.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Frazão, O.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
[Crossref] [PubMed]

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Hnatovsky, C.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Islam, M. R.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Just, F.

Kim, T.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Kobelke, J.

Lai, M.-H.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Lewis, E.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

LiKamWa, P.

Lim, K.-S.

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

Lobo-Ribeiro, A. B.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

Lu, P.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Luo, Z.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Ma, J.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Piracha, M. U.

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

Pruneri, V.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Rajan, G.

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

Ramakrishnan, M.

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

Roriz, P.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

Rothhardt, M.

Saccomandi, P.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Sáez de Ocáriz, I.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Salceda-Delgado, G.

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

Santos, J. L.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

Schena, E.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Schülzgen, A.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

Schuster, K.

Semenova, Y.

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

Silva, R. M.

Simões, J. A.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

Spittel, R.

Tosi, D.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Towey, J.

M. Duff and J. Towey, “Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility,” Analog Dialogue 44(10), 1–6 (2010).

Van Newkirk, A.

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Villatoro, J.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, A. Schülzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42(10), 2022–2025 (2017).
[Crossref] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Wang, X.-D.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wang, Y.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Wolfbeis, O. S.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Yu, H.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Zheng, Y.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Zheng, Z.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Zubia, J.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Anal. Chem. (1)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Analog Dialogue (1)

M. Duff and J. Towey, “Two ways to measure temperature using thermocouples feature simplicity, accuracy, and flexibility,” Analog Dialogue 44(10), 1–6 (2010).

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schülzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27(14), 1523–1526 (2015).
[Crossref]

J. Biomed. Opt. (1)

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 050903 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Sci. Rep. (1)

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7(1), 4451 (2017).
[Crossref] [PubMed]

Sensors (Basel) (7)

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials,” Sensors (Basel) 16(1), 99 (2016).
[Crossref] [PubMed]

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

M. R. Islam, M. M. Ali, M.-H. Lai, K.-S. Lim, and H. Ahmad, “Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review,” Sensors (Basel) 14(4), 7451–7488 (2014).
[Crossref] [PubMed]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber,” Sensors (Basel) 18(1), 273 (2018).
[Crossref] [PubMed]

Other (2)

J. Villatoro, O. Arrizabalaga, E. Antonio-Lopez, J. Zubia, and I. S. de Ocáriz, “Multicore fiber sensors,” in Optical Fiber Communications Conference and Exhibition (OFC), 2017 (IEEE, 2017), pp. 1–3.

Omega Engineering, “Thermocouple Response Time” www.omega.com/techref/ThermocoupleResponseTime.html , Accessed 9/27/2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Seven Core MCF (a) schematic of MCF with hexagonal core shape, (b) microscope image of MCF, (c) microscope image with small reflection on bottom right that clearly shows the geometry of the MCF, and (d) periodic interference pattern of SMF-MCF-SMF device.
Fig. 2
Fig. 2 Experimental setup consists of a light source, fiber optical circulator, packaged MCF temperature sensor, and spectrometer or optical interrogator (depending on experiment). MCF temperature sensor consists of a 5mm section of MCF fusion spliced between two SMFs. The Sensor is packaged into a stainless tube and operated in reflection mode.
Fig. 3
Fig. 3 (A) Spectral shift of MCF. With increasing temperature, the wavelength of maximum reflection shifts to larger wavelengths. (B) Linear plot shows a spectral shift 35 pm/°C.
Fig. 4
Fig. 4 Temperature response of MCF temperature sensor using photodiode interrogator in a stream of heated air. (A) Counts from photodiode output on right axis, temperature (°C) on left axis. (B) The oscillations in the counts (right axis) is a product of the oscillation of the power supplied to the heating element. The PID loop of the heating element is constantly changing power (left axis), and the MCF response time is fast enough to detect these slight changes in temperature.
Fig. 5
Fig. 5 (A) MCF temperature calibration using photodiode interrogator in a gas (▲) and liquid (■) environment. (B) Error analysis demonstrated the calibration was within 5% error for all points. The line is not fit to data, it is the y = x line, and used for visual aid of calibration precision. The closer a data point is to the line, the more precise the calibration.
Fig. 6
Fig. 6 Response time of the packaged MCF temperature sensor and the theoretical response time of a k-type thermocouple of identical dimensions. The MCF sensor has a τ63% of 0.09 seconds, while the TC has a theoretical τ63% > 1.0 seconds. The TC time constant was calculated from correlation charts provided by Omega [21]. The line for the TC is not meant to represent a liner relationship, the data is a starting value and a final value. The line was added for visual aid only. The TC time constant was calculated from correlation charts provided by Omega [21]. The line for the TC is not meant to represent a liner relationship, the data is a starting value and a final value. The line was added for visual aid only.

Metrics