Abstract

We propose a novel infrared (IR) metamaterial absorber by using chalcogenide glass (ChG) material. The merits of ChG are zero extinction coefficient, excellent IR transparency, high third-order nonlinearity, adjustable refraction index, dispersion, and energy bandgap in the IR wavelength range. Therefore, it is very suitable for metamaterial designs used in widespread applications, such as solar cells, environmental sensors, wearable electronic devices, optoelectronics, and so on. This ChG-based metamaterial absorber is configured with a cyclic ring-disk (CRD) structure. By tailoring the geometrical structures of CRD, the corresponding resonant wavelength and intensity of the reflection spectra could be attenuated and modified. The maximum quality factor (Q-factor) is 625. These unique characteristics of this IR metamaterial absorber with a CRD structure can be used as a tunable IR filter, variable optical attenuator (VOA), and multi-resonance switch. For the applicability of the proposed IR metamaterial absorber, the proposed device is surrounded with different environmental media. The electromagnetic responses indicate that the proposed IR metamaterial absorber can be a high-efficiency environmental sensor with a correlation coefficient of 0.99999.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterizations of reconfigurable infrared metamaterial absorbers

Ruijia Xu and Yu-Sheng Lin
Opt. Lett. 43(19) 4783-4786 (2018)

Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators

Wei Ma, Yongzheng Wen, and Xiaomei Yu
Opt. Express 21(25) 30724-30730 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  2. Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterial using electric split-ring resonators,” Opt. Lett. 38(16), 3126–3128 (2013).
    [Crossref] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  5. Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
    [Crossref]
  6. N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
    [Crossref]
  7. Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
    [Crossref]
  8. T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
    [Crossref]
  9. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  10. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
    [Crossref] [PubMed]
  11. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  12. J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
    [Crossref] [PubMed]
  13. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
    [Crossref]
  14. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref] [PubMed]
  15. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [Crossref] [PubMed]
  16. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
    [Crossref] [PubMed]
  17. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  18. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  19. T. W. H. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
    [Crossref]
  20. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [Crossref] [PubMed]
  21. Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
    [Crossref]
  22. J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).
  23. Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
    [Crossref]
  24. W. X. Lim and R. Singh, “Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime,” Nano Converg. 5(1), 5 (2018).
    [Crossref] [PubMed]
  25. P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
    [Crossref]
  26. X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
    [Crossref] [PubMed]
  27. G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
    [Crossref]

2018 (3)

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

W. X. Lim and R. Singh, “Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime,” Nano Converg. 5(1), 5 (2018).
[Crossref] [PubMed]

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

2017 (2)

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

2016 (3)

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

2015 (1)

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

2014 (5)

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

2013 (2)

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterial using electric split-ring resonators,” Opt. Lett. 38(16), 3126–3128 (2013).
[Crossref] [PubMed]

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

2012 (3)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

2010 (2)

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

T. W. H. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Bai, S.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Boyce, M. C.

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

Brückl, H.

Cai, M.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Cai, W.

Cao, F.

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Carter, W. B.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Chen, C. C.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Chen, W.

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Chen, Z.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Chettiar, U. K.

Chin, X. Y.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Chuo, Y.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Dayal, G.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Deshpande, V. S.

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Ding, B.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Dolling, G.

Dorodnyy, A.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Drachev, V. P.

Eckel, Z.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

Evans, G.

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fedoryshyn, Y.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Fu, H.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Gao, J.

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Ge, T. W.

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

Giessen, H.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gu, P.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Guo, F.

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Hafner, C.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

He, M. Y.

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hohertz, D.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Hong, Z.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Hu, H.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Hutchinson, J. W.

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Jacobsen, A. J.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

Kaminska, B.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Kavanagh, K. L.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Kildishev, A. V.

Koch, U.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Landrock, C.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Lee, C.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

Leuthold, J.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Li, H.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Li, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Liao, Q.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Lim, W. X.

W. X. Lim and R. Singh, “Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime,” Nano Converg. 5(1), 5 (2018).
[Crossref] [PubMed]

Lin, Y. S.

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterial using electric split-ring resonators,” Opt. Lett. 38(16), 3126–3128 (2013).
[Crossref] [PubMed]

Linden, S.

Liu, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Q.

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Lochbaum, Y.

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Lu, S.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Lu, X.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Lucas, P.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Ma, F.

Maier, T.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mücklich, A.

T. W. H. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Oates, T. W. H.

T. W. H. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[Crossref]

Omrane, B.

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Qian, L.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Ren, Z.

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Ro, C. J.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

Schaedler, T. A.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

Shalaev, V. M.

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shi, Q.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Singh, R.

W. X. Lim and R. Singh, “Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime,” Nano Converg. 5(1), 5 (2018).
[Crossref] [PubMed]

Singh, R. J.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Soci, C.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Solanki, A.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Song, C.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Song, T. B.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Sorensen, A. E.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

Sum, T. C.

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, T.

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tao, H. Z.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Thomas, E. L.

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

Tittl, A.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Wang, L.

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

Wang, T.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Wang, X.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Wang, Y. W.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Wang, Z. L.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Wang, Z. Y.

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, W. Y.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Wu, Y.

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Xu, C.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Yan, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Yan, Z. D.

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Yang, A. P.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Yang, S. S.

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

Yang, Y.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Yang, Y. M.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Yang, Z. J.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Yang, Z. Y.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

You, J.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Yu, F.

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

Yuan, H. K.

Yue, S.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Zhang, B.

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhou, H.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

ACS Nano (2)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Adv. Eng. Mater. (1)

T. A. Schaedler, C. J. Ro, A. E. Sorensen, Z. Eckel, S. S. Yang, W. B. Carter, and A. J. Jacobsen, “Designing metallic micro lattices for energy absorber applications,” Adv. Eng. Mater. 16(3), 276–283 (2014).
[Crossref]

IEEE Sens. J. (1)

Y. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-area low-cost flexible plastic nanohole arrays for integrated bio-chemical sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Infrared Laser Eng. (1)

J. Gao, F. Yu, T. W. Ge, and Z. Y. Wang, “Dispersion study of chalcogenide glass for mid-IR supercontinuum generation,” Infrared Laser Eng. 43(10), 3368–3372 (2014).

Int. J. Impact Eng. (1)

G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, “Concepts for enhanced energy absorption using hollow micro-lattices,” Int. J. Impact Eng. 37(9), 947–959 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

X. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, and H. Fu, “Near-Infrared Lasing from Small-Molecule Organic Hemispheres,” J. Am. Chem. Soc. 137(29), 9289–9295 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. Dayal, A. Solanki, X. Y. Chin, T. C. Sum, C. Soci, and R. J. Singh, “High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

Y. Yang, Z. Y. Yang, P. Lucas, Y. W. Wang, Z. J. Yang, A. P. Yang, B. Zhang, and H. Z. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Light Sci. Appl. (3)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Nano Converg. (1)

W. X. Lim and R. Singh, “Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime,” Nano Converg. 5(1), 5 (2018).
[Crossref] [PubMed]

Nano Lett. (2)

J. H. Lee, L. Wang, M. C. Boyce, and E. L. Thomas, “Periodic bicontinuous composites for high specific energy absorption,” Nano Lett. 12(8), 4392–4396 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

T. W. H. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Opt. Commun. (1)

P. Gu, L. Qian, Z. D. Yan, W. Y. Wu, Z. Chen, and Z. L. Wang, “Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonal-close-packed dielectric microspheres,” Opt. Commun. 419, 103 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic drawing of ChG-based metamaterial absorber with CRD structure.
Fig. 2
Fig. 2 (a) Reflection spectra of ChG-based metamaterial absorber with CRD structure by changing refraction index of ChG (nm). The outer ring and inner disk of CRD structure are kept at R = 1.2 μm and r = 0.8 μm on the same plane (g = 0 μm). (b) and (c) are the corresponding E-field and H-field distributions of ChG-based metamaterial absorber with CRD structure at the condition of nm = 2.4, respectively.
Fig. 3
Fig. 3 Reflection spectra of ChG-based metamaterial absorber with CRD structure by changing (a) diameter of inner disk (r) and (b) diameter of outer ring (R), respectively.
Fig. 4
Fig. 4 (a) Reflection spectra of ChG-based metamaterial absorber with CRD structure by changing the gap between inner disk and outer ring (g). (b) and (c) are corresponding E-field and H-field distributions under the condition of R = 1.2 μm, r = 0.8 μm, and g = 1 μm, respectively.
Fig. 5
Fig. 5 Reflection spectra of ChG-based metamaterial absorber with CRD structure by changing horizontal displacement of outer ring (d) at (a) d = 0.4 μm, (b) d = 0.35 μm, (c) d = 0.30 μm, (d) d = 0.25 μm, (e) d = 0.20 μm, (f) d = 0.15 μm, (g) d = 0.10 μm, (h) d = 0.05 μm, (i) d = 0 μm, respectively.
Fig. 6
Fig. 6 E-field and H-field distributions of ChG-based metamaterial absorber with CRD structure under the conditions of (a) d = 0.4 μm, (b) d = 0.2 μm, and (c) d = 0 μm, respectively.
Fig. 7
Fig. 7 (a) Reflection spectra of ChG-based metamaterial absorber with CRD structure by changing ambient reflection index (n0). (b) The relationship of resonance and reflection index (n0).

Metrics