Abstract

Types of curable methacryloxypropyl silicone resins were prepared by a cohydrolysis condensation reaction with 3-methacryloxypropyltrimethoxysilane, methyl trimethoxy silane, and dimethyl diethoxy silane. The properties of the transparent resins cured by the ultraviolet were investigated in detail. The ultraviolet cured silicone material transparency was higher than 95% in the light wavenumber range of 400 nm and 800 nm, pencil hardness from 6 B to 6 H, and thermal decomposition temperature higher than 150°C. The silicone materials prepared by ultraviolet-assisted 3D printing had a water absorption coefficient of 0.21 wt% and a line thermal expansion coefficient of 5.27 × 10−4 m/k. It showed that the silicone resins can be candidates for ultraviolet cured transparent coating and ultraviolet-assisted 3D printing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing

Po-Hsun Huang, Tzu-Chien Huang, Yi-Ting Sun, and Sen-Yeu Yang
Opt. Express 16(5) 3041-3048 (2008)

3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups

Rachel Woods, Sonja Feldbacher, David Zidar, Gregor Langer, Valentin Satzinger, Volker Schmidt, Niklas Pucher, Robert Liska, and Wolfgang Kern
Opt. Mater. Express 4(3) 486-498 (2014)

Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board

Do-Won Kim, Seung Ho Ahn, In-Kui Cho, Dong-Min Im, Shirazy Md. Shorab Muslim, and Hyo-Hoon Park
Opt. Express 16(21) 16798-16805 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
    [Crossref]
  2. M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
    [Crossref] [PubMed]
  3. D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
    [Crossref]
  4. A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
    [Crossref] [PubMed]
  5. M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
    [Crossref]
  6. M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
    [Crossref]
  7. E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
    [Crossref] [PubMed]
  8. G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
    [Crossref] [PubMed]
  9. J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
    [Crossref]
  10. J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
    [Crossref] [PubMed]
  11. D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
    [Crossref] [PubMed]
  12. D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
    [Crossref] [PubMed]
  13. J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
    [Crossref] [PubMed]
  14. M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
    [Crossref] [PubMed]
  15. L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
    [Crossref] [PubMed]
  16. R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
    [Crossref]
  17. G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
    [Crossref]
  18. S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
    [Crossref]
  19. L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
    [Crossref] [PubMed]
  20. M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
    [Crossref]
  21. K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
    [Crossref] [PubMed]
  22. S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
    [Crossref]
  23. G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
    [Crossref]
  24. I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
    [Crossref]
  25. M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
    [Crossref]
  26. S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
    [Crossref] [PubMed]
  27. Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
    [Crossref]
  28. Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
    [Crossref]
  29. X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
    [Crossref]
  30. X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “FT-IR analysis,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480494 .
  31. X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “NMR data,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480464 .
  32. X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “DSC data,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480497 .
  33. J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
    [Crossref]

2018 (3)

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

2017 (3)

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

2016 (7)

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

2015 (5)

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

2014 (5)

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
[Crossref]

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

2013 (1)

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

2011 (1)

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

2010 (2)

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

2006 (1)

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

2004 (1)

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

2003 (1)

D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
[Crossref] [PubMed]

Ablett, M. P.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Aissa, B.

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

Alm, M.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Areir, M.

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

Barker, I. A.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Barrera, E. V.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Billson, D. R.

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

Bongiovanni, R.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Boydston, A. J.

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

Bryson, T. M.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Burri, C. H.

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

Busbee, T. A.

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

Busscher, H. J.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Calignano, F.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Chen, Y.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Cheng, E.

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Chiappone, A.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Choi, J. W.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Cohn, D.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Cooperstein, I.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Covington, J. A.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Dai, J.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Dolatshahi-Pirouz, A.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Dove, A. P.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Dufva, M.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Duoss, E. B.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Durban, M. M.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

El Khakani, M. A.

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

Emnéus, J.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Engler, A. C.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Fan, X. D.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Fantino, E.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Farahani, R. D.

R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
[Crossref]

Fu, K.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Fu, S. Y.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Fyson, J.

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

Gammon, S.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Ganter, M. A.

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

Gerasimov, J. Y.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Gilbert, H. T. J.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Gillette, M. U.

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

Gladman, A. S.

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

Govindarajan, S. R.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Griffini, G.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

Grotenhuis, A.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Han, W.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Hanson Shepherd, J. N.

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

Harrison, D.

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

Hart, L. R.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Hayes, W.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Hemmingsen, M.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Herrmann, A.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Homan, K. A.

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

Hoyland, J. A.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Hu, L.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

Hua, X. L.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Hubbard, K. M.

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

Hutchins, D. A.

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

Imam, A.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Invernizzi, M.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

Jain, T.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Janicke, M.

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

Jones, J. R.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Joy, A.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Khabashesku, V. N.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Kolesky, D. B.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

Kong, J.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Lacey, S.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Lai, G. Q.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Larsen, M. B.

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

Layani, M.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Le, A. B. A.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Lebel, L. L.

R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
[Crossref]

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

Leigh, S. J.

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Lenhardt, J. M.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Levi, M.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

Lewicki, J. P.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Lewis, J. A.

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
[Crossref] [PubMed]

Li, S.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Li, T.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Li, W. N.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Liu, C. G.

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

Liu, Y. Y.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Loepfe, M.

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

Lozano, K.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Lu, Y. F.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Luo, Y. S.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Magdassi, S.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Mai, Y. W.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Manfredi, D.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Margrave, J. L.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Maune, H.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

McClelland, G. M.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Mengüç, Y.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

Metz, T. R.

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Mohanty, S.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Moore, T.

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

Muth, J. T.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

Natale, G.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

Nelson, A.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Nguyen, D. T.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Nuzzo, R. G.

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

Ortiz-Acosta, D.

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

Parker, S. T.

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

Peng, H.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Perez-Perez, L.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Peterson, G. I.

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

Pirri, C. F.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Postiglione, G.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

Purssell, C. P.

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

Qiao, W. Q.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Ren, Y.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Ribet, F.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Richardson, S. M.

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Rodriguez-Macias, F.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Roppolo, I.

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

Rustema-Abbing, M.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Sachyani, E.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Safarik, D. J.

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

Schulze, S. E.

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Schumacher, C. M.

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

Shang, Q. Q.

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

Shao, Q.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Shepherd, R. F.

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

Si, Q. F.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Small, W.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Smay, J. E.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Song, G. X.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Stark, W. J.

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

Storti, D. W.

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

Sturgess, C.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Swanson, J. P.

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Therriault, D.

R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
[Crossref]

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
[Crossref] [PubMed]

Thompson, L. E.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Thomsen, P.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Trifol, J.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Truby, R. L.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

Turri, S.

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

van de Lagemaat, M.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

van der Mei, H. C.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Vogt, D. M.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

Vora, A.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Wan, J.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Wang, S. J.

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Wang, Y.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Wang, Z.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

White, S. R.

D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
[Crossref] [PubMed]

Wildman, R.

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Wilson, T. S.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Wojtecki, R. J.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Wolff, A.

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Wood, R. J.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

Wu, A. S.

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Xiao, H. M.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Xu, Y.

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Yan, C.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Yang, L. L.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Yang, X. F.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Yang, Y.

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Yao, Y.

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

Yue, J.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Zarek, M.

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

Zhang, M. S.

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

Zhao, P.

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

Zheng, Q. L.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

Zhou, Y. H.

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

Zhu, J.

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Zhu, X. B.

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

G. I. Peterson, M. B. Larsen, M. A. Ganter, D. W. Storti, and A. J. Boydston, “3D-printed mechanochromic materials,” ACS Appl. Mater. Interfaces 7(1), 577–583 (2015).
[Crossref] [PubMed]

L. R. Hart, S. Li, C. Sturgess, R. Wildman, J. R. Jones, and W. Hayes, “3D printing of biocompatible supramolecular polymers and their composites,” ACS Appl. Mater. Interfaces 8(5), 3115–3122 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (5)

J. Yue, P. Zhao, J. Y. Gerasimov, M. van de Lagemaat, A. Grotenhuis, M. Rustema-Abbing, H. C. van der Mei, H. J. Busscher, A. Herrmann, and Y. Ren, “3D-printable antimicrobial composite resins,” Adv. Funct. Mater. 25(43), 6756–6767 (2015).
[Crossref]

J. N. Hanson Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, and R. G. Nuzzo, “3D Microperiodic hydrogel scaffolds for robust neuronal cultures,” Adv. Funct. Mater. 21(1), 47–54 (2011).
[Crossref] [PubMed]

D. Ortiz-Acosta, T. Moore, D. J. Safarik, K. M. Hubbard, and M. Janicke, “3D-printed silicone materials with hydrogen getter capability,” Adv. Funct. Mater. 28(17), 1707285 (2018).
[Crossref]

M. Loepfe, C. M. Schumacher, C. H. Burri, and W. J. Stark, “Contrast agent incorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps,” Adv. Funct. Mater. 25(14), 2129–2137 (2015).
[Crossref]

J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. Imam, K. Lozano, and E. V. Barrera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).
[Crossref]

Adv. Mater. (6)

K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, and L. Hu, “Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries,” Adv. Mater. 28(13), 2587–2594 (2016).
[Crossref] [PubMed]

E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, “3D printing of conductive complex structures with in situ generation of silver nanoparticles,” Adv. Mater. 28(19), 3712–3717 (2016).
[Crossref] [PubMed]

D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis, “3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs,” Adv. Mater. 26(19), 3124–3130 (2014).
[Crossref] [PubMed]

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref] [PubMed]

M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, “3D printing of shape memory polymers for flexible electronic devices,” Adv. Mater. 28(22), 4449–4454 (2016).
[Crossref] [PubMed]

L. L. Lebel, B. Aissa, M. A. El Khakani, and D. Therriault, “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils,” Adv. Mater. 22(5), 592–596 (2010).
[Crossref] [PubMed]

Biomacromolecules (1)

S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, and J. Emnéus, “3D printed silicone−hydrogel scaffold with enhanced physicochemical properties,” Biomacromolecules 17(4), 1321–1329 (2016).
[Crossref] [PubMed]

Biomater. Sci. (1)

I. A. Barker, M. P. Ablett, H. T. J. Gilbert, S. J. Leigh, J. A. Covington, J. A. Hoyland, S. M. Richardson, and A. P. Dove, “A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering,” Biomater. Sci. 2(4), 472–475 (2014).
[Crossref]

Composites A (1)

G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites A 76, 110–114 (2015).
[Crossref]

J. Appl. Polym. Sci. (1)

X. F. Yang, Q. Shao, L. L. Yang, X. B. Zhu, X. L. Hua, Q. L. Zheng, G. X. Song, and G. Q. Lai, “Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,” J. Appl. Polym. Sci. 127(3), 1717–1724 (2013).
[Crossref]

J. Coat. Technol. Res. (1)

Y. Hu, C. G. Liu, Q. Q. Shang, and Y. H. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coat. Technol. Res. 15(1), 77–85 (2018).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “A study of 3D printed flexible supercapacitors onto silicone rubber substrates,” J. Mater. Sci. Mater. Electron. 28(23), 18254–18261 (2017).
[Crossref]

J. Micromech. Microeng. (1)

R. D. Farahani, L. L. Lebel, and D. Therriault, “Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet- assisted three-dimensional printing,” J. Micromech. Microeng. 24(5), 055020 (2014).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

Q. F. Si, X. D. Fan, Y. Y. Liu, J. Kong, S. J. Wang, and W. Q. Qiao, “Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators,” J. Polym. Sci. A Polym. Chem. 44(10), 3261–3270 (2006).
[Crossref]

Macromol. Rapid Commun. (1)

M. M. Durban, J. M. Lenhardt, A. S. Wu, W. Small, T. M. Bryson, L. Perez-Perez, D. T. Nguyen, S. Gammon, J. E. Smay, E. B. Duoss, J. P. Lewicki, and T. S. Wilson, “Custom 3D printable silicones with tunable stiffness,” Macromol. Rapid Commun. 39(4), 1700563 (2018).
[Crossref] [PubMed]

Macromolecules (2)

M. S. Zhang, A. Vora, W. Han, R. J. Wojtecki, H. Maune, A. B. A. Le, L. E. Thompson, G. M. McClelland, F. Ribet, A. C. Engler, and A. Nelson, “Dual-responsive hydrogels for direct-write 3D printing,” Macromolecules 48(18), 6482–6488 (2015).
[Crossref]

S. R. Govindarajan, Y. Xu, J. P. Swanson, T. Jain, Y. F. Lu, J. W. Choi, and A. Joy, “A solvent and initiator free, low-modulus, degradable polyester platform with modular functionality for ambient-temperature 3D printing,” Macromolecules 49(7), 2429–2437 (2016).
[Crossref]

Mater. Sci. Eng. B (1)

M. Areir, Y. Xu, D. Harrison, and J. Fyson, “3D printing of highly flexible supercapacitor designed for wearable energy storage,” Mater. Sci. Eng. B 226, 29–38 (2017).
[Crossref]

Nat. Mater. (1)

D. Therriault, S. R. White, and J. A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(4), 265–271 (2003).
[Crossref] [PubMed]

Polymer (1)

Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu, and Y. W. Mai, “Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors,” Polymer 51(12), 2755–2762 (2010).
[Crossref]

Polymer (Guildf.) (1)

G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3D-printable CFR polymer composites with dual-cure sequential IPNs,” Polymer (Guildf.) 91, 174–179 (2016).
[Crossref]

Sci. Rep. (1)

A. S. Wu, W. Small, T. M. Bryson, E. Cheng, T. R. Metz, S. E. Schulze, E. B. Duoss, and T. S. Wilson, “3D printed silicones with shape memory,” Sci. Rep. 7(1), 4664 (2017).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

S. J. Leigh, C. P. Purssell, D. R. Billson, and D. A. Hutchins, “Using a magnetite/ thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors,” Smart Mater. Struct. 23(9), 095039 (2014).
[Crossref]

Other (3)

X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “FT-IR analysis,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480494 .

X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “NMR data,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480464 .

X. Yang, Q. Chen, H. Bao, J. Liu, Y. Wu, and G. Lai, “DSC data,” figshare (2018), https://doi.org/10.6084/m9.figshare.6480497 .

Supplementary Material (3)

NameDescription
» Dataset 1       FT-IR analysis
» Dataset 2       NMR Data
» Dataset 3       DSC Data

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The FT-IR spectrum of the ultraviolet curable silicone resin (Dataset 1 [30]).
Fig. 2
Fig. 2 The 1 H-NMR spectrum of the ultraviolet curable silicone resin (Dataset 2 [31]).
Fig. 3
Fig. 3 The DSC curves of the silicone resins with various of n(R)/n(Si) cured by ultraviolet with 10 wt% of 2-hydroxy-2-methyl-phenyl-propane-1-one for 30 s (Dataset 3 [32]).
Fig. 4
Fig. 4 The TGA curves for the silicone resins with various of n(R)/n(Si) cured by ultraviolet with 10 wt% of 2-hydroxy-2-methyl-phenyl-propane-1-one for 30 s.
Fig. 5
Fig. 5 FT-IR spectra of silicone resins cured with different amount of 2-hydroxy-2-methyl-phenyl-propane-1-one for 30 s.
Fig. 6
Fig. 6 The transparency of the silicone resins cured with different amount of 2-hydroxy-2-methyl-phenyl-propane-1-one for 30 s
Fig. 7
Fig. 7 The FT-IR spectra for the silicone resin before and after cured by ultraviolet with 10 wt% of 2-hydroxy-2-methyl-phenyl-propane-1-one for 30 s.
Fig. 8
Fig. 8 Some accessories prepared by ultraviolet-assisted 3D printing.
Fig. 9
Fig. 9 The samples prepared by 3D printing with acryloxyl modified silicone resin prepolymer with R/Si = 1.4

Tables (3)

Tables Icon

Table 1 The Effects of Various of n(R)/n(Si)

Tables Icon

Table 2 Effect of Different Amount of Ultraviolet Initiator

Tables Icon

Table 3 Effect of Different Ultraviolet Curing Time

Metrics