Abstract

By using a finite element method with matched boundary conditions, we analyze an interaction between a central core mode (x- and y- polarizations), which shows as a supermode and a plasmonic mode by involvement of another (lateral) core mode in a biosensor based on a birefringent solid-core microstructured optical fiber. The transmission losses of the lateral core modes are larger than those of the corresponding central core modes for the x- and y- polarization components. A very interesting result is that the maximum value of the amplitude sensitivity for the second (lateral) core (II, x) mode (x- polarization) is at a wavelength close to the resonant wavelength of the first (central) core (I, x) mode. Also, the maximum value of the amplitude sensitivity for the second core (II, y) mode (y- polarization) is at a wavelength that is close to the resonant wavelength of the first core (I, y) mode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong power absorption in a new microstructured holey fiber-based plasmonic sensor

V. A. Popescu, N. N. Puscas, and G. Perrone
J. Opt. Soc. Am. B 31(5) 1062-1070 (2014)

Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors

Alireza Hassani and Maksim Skorobogatiy
J. Opt. Soc. Am. B 24(6) 1423-1429 (2007)

Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core

Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao
Opt. Express 23(7) 8576-8582 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Popescu, N. N. Puscas, and G. Perrone, “Power absorption efficiency of a new microstructured plasmon optical fiber,” J. Opt. Soc. Am. B 29(11), 3039–3046 (2012).
    [Crossref]
  2. V. A. Popescu, N. N. Puscas, and G. Perrone, “Strong power absorption in a new microstructured holey fiber-based plasmonic sensor,” J. Opt. Soc. Am. B 31(5), 1062–1070 (2014).
    [Crossref]
  3. C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
    [Crossref]
  4. S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).
  5. D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
    [Crossref] [PubMed]
  6. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
    [Crossref]
  7. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
    [Crossref]
  8. V. A. Popescu, “Comparison between propagation characteristics of some photonic fiber-based plasmonic sensors,” Rom. J. Phys. 62(3–4), 204 (2017).
  9. V. A. Popescu, N. N. Puscas, and G. Perrone, “Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber,” Plasmonics 12(3), 905–911 (2017).
    [Crossref]
  10. A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
    [Crossref]
  11. V. A. Popescu, “A new resonant coupling between an analyte-filled core mode and a supermode of a multi-core holley fiber based plasmonic sensor,” Mod. Phys. Lett. B 26(31), 1250207 (2012).
    [Crossref]
  12. A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
    [Crossref]
  13. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  14. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).
  15. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
    [Crossref]
  16. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
    [Crossref] [PubMed]
  17. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
    [Crossref] [PubMed]

2017 (5)

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

V. A. Popescu, “Comparison between propagation characteristics of some photonic fiber-based plasmonic sensors,” Rom. J. Phys. 62(3–4), 204 (2017).

V. A. Popescu, N. N. Puscas, and G. Perrone, “Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber,” Plasmonics 12(3), 905–911 (2017).
[Crossref]

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

2015 (2)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).

2014 (1)

2012 (4)

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

V. A. Popescu, N. N. Puscas, and G. Perrone, “Power absorption efficiency of a new microstructured plasmon optical fiber,” J. Opt. Soc. Am. B 29(11), 3039–3046 (2012).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

V. A. Popescu, “A new resonant coupling between an analyte-filled core mode and a supermode of a multi-core holley fiber based plasmonic sensor,” Mod. Phys. Lett. B 26(31), 1250207 (2012).
[Crossref]

2011 (1)

2008 (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

2007 (1)

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
[Crossref]

2005 (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Ahmed, R.

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Akter, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Ali, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Butt, H.

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

Cheng-Jie, Y.

S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
[Crossref]

Hasan, M. R.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Hu, J.

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

Jansen, F.

Jauregui, C.

Jing, W.

S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).

Li, D.

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

Limpert, J.

Liu, D.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

Liu, H.

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Perrone, G.

Popescu, V. A.

V. A. Popescu, “Comparison between propagation characteristics of some photonic fiber-based plasmonic sensors,” Rom. J. Phys. 62(3–4), 204 (2017).

V. A. Popescu, N. N. Puscas, and G. Perrone, “Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber,” Plasmonics 12(3), 905–911 (2017).
[Crossref]

V. A. Popescu, N. N. Puscas, and G. Perrone, “Strong power absorption in a new microstructured holey fiber-based plasmonic sensor,” J. Opt. Soc. Am. B 31(5), 1062–1070 (2014).
[Crossref]

V. A. Popescu, N. N. Puscas, and G. Perrone, “Power absorption efficiency of a new microstructured plasmon optical fiber,” J. Opt. Soc. Am. B 29(11), 3039–3046 (2012).
[Crossref]

V. A. Popescu, “A new resonant coupling between an analyte-filled core mode and a supermode of a multi-core holley fiber based plasmonic sensor,” Mod. Phys. Lett. B 26(31), 1250207 (2012).
[Crossref]

Puscas, N. N.

Rabiul Hasan, M.

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

Rajan,

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
[Crossref]

Rana, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Rifat, A. A.

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
[Crossref]

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Shuai, B.

Stutzki, F.

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Tünnermann, A.

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Wei-Hua, S.

S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).

Xia, L.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

Zhang, W.

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

Zhang, Y.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

Zhou, C.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

Zhou, G.

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

IEEE Photon. J. (1)

D. Li, W. Zhang, H. Liu, J. Hu, and G. Zhou, “High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength,” IEEE Photon. J. 9(2), 6801608 (2017).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

J. Nanophotonics (1)

A. A. Rifat, M. Rabiul Hasan, R. Ahmed, and H. Butt, “Photonic crystal fiber-based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Mod. Phys. Lett. B (1)

V. A. Popescu, “A new resonant coupling between an analyte-filled core mode and a supermode of a multi-core holley fiber based plasmonic sensor,” Mod. Phys. Lett. B 26(31), 1250207 (2012).
[Crossref]

Opt. Commun. (3)

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274(2), 320–326 (2007).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional resonance coupling,” Opt. Commun. 285(9), 2466–2471 (2012).
[Crossref]

Opt. Express (2)

Photonics (1)

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Plasmonics (1)

V. A. Popescu, N. N. Puscas, and G. Perrone, “Simulation of the sensing performance of a plasmonic biosensor based on birefringent solid-core microstructured optical fiber,” Plasmonics 12(3), 905–911 (2017).
[Crossref]

Rom. J. Phys. (1)

V. A. Popescu, “Comparison between propagation characteristics of some photonic fiber-based plasmonic sensors,” Rom. J. Phys. 62(3–4), 204 (2017).

Wuli Xuebao (1)

S. Wei-Hua, Y. Cheng-Jie, and W. Jing, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 0224221 (2015).

Other (1)

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Cross section of a fiber consisting of 14 air holes (d = 2 μm) with radius r = 0.5 μm, which are inserted in a SiO2 core (radius rg = 5 μm) surrounded by a gold layer (thickness tg = 40 nm) and an analyte layer. (b) The orientation of the dominant electric field for different core and plasmonic modes, which are used for FEM simulations.
Fig. 2
Fig. 2 Contour plot of the z-component Sz (x, y) of Poynting vector at the phase matching points: (a) λ (I, x) = 0.629 μm, (b) λ (II, x) = 0.629 μm, (c) λ (I, y) = 0.624 μm, and (d) λ (II, y) = 0.624 μm. All the figures belong to na = 1.33.
Fig. 3
Fig. 3 Contour plot of the z-component Sz (x, y) of Poynting vector at the phase matching points for: (a) core mode (II, x) at λ = 0.596 μm, (b) plasmon mode (II, x) at λ = 0.596 μm, (c) core mode (II, y) at λ = 0.595 μm, and (d) plasmon mode (II, y) at λ = 0.595 μm. All the figures belong to na = 1.33.
Fig. 4
Fig. 4 Contour plot of the z-component Sz (x, y) of Poynting vector of the core modes at the loss matching points: (a) λ (III, x) = 0.591 μm, (b) λ (I, x) = 0.591 μm, (c) λ (III, y) = 0.590 μm, and (d) λ (I, y) = 0.590 μm. All the figures belong to na = 1.33.
Fig. 5
Fig. 5 Real part of the effective index versus the wavelength for the core modes (I, x, green), (I, y, red), (II, x, blue), (II, y, cyan), (III, x, magenta), and (III, y, black) near the phase (λ (I, y) = 0.735 μm) or loss (λ (I, x) = 0.747 μm, λ (II, x) = 0.692 μm, and λ (II, y) = 0.693 μm) matching points when na = 1.37. The dashed lines (blue and cyan) are for the plasmonic modes. The brown points are for a fictive intersection (due to the avoided-crossing effect [16,17]) of the dispersive curves near the loss matching wavelengths.
Fig. 6
Fig. 6 (a) Imaginary part of the effective index versus the wavelength near the phase matching points: λ = 0.629 μm for the core mode (I, x, green), λ = 0.624 μm for the core mode (I, y, red), λ = 0.591 μm for the core mode (III, x, magenta), and λ = 0.59 μm for the core mode (III, y, black) when na = 1.33. The (imaginary) effective index for the mode (II, x, blue) is close to that of the mode (I, x, green) at λ = 0.629 μm. (b) Spectral variation of loss near the phase matching points: λ = 0.747 μm for the core mode (I, x, green), λ = 0.735 μm for the core mode (I, y, red), λ = 0.675 μm for the core mode (III, x, magenta), and λ = 0.669 μm for the core mode (III, y, black) when na = 1.37. The loss for the core mode (II, x, blue) is close to that of the core mode (I, x, green) at λ = 0.747 μm.
Fig. 7
Fig. 7 (a) Variation of imaginary part of the effective index with wavelength near the phase matching points: λ = 0.596 μm for the mode (II, x, blue) and λ = 0.595 μm for the mode (II, y, cyan) when na = 1.33. The dashed lines (blue and cyan) are for the plasmonic modes. These lines show an inflection point at the resonant wavelength for the core modes (II, x) and (II,y). (b) Variation of imaginary part of the effective index with wavelength for the core modes (I, x, green) and (I, y, red) near the phase matching points for two analyte RI values (na = 1.33 and na = 1.331).
Fig. 8
Fig. 8 (a) Variation of imaginary part of the effective index with wavelength near the phase matching points: λ = 0.596 μm for the mode (II, x, blue) and λ = 0.595 μm for the mode (II, y, cyan) when na = 1.33. Imaginary part of the effective index for the mode (II, x, blue) at λ = 0.6305 μm is close to that of the mode (I, x, green) at λ = 0.629 μm. (b) Variation of imaginary part of the effective index with wavelength near the phase matching points: λ = 0.692 μm for the mode (II, x, blue) and λ = 0.693 μm for the mode (II, y, cyan) when na = 1.37. Apparently, imaginary part of the effective index for the mode (II, x, blue) is close to that of the mode (I, x, green) at λ = 0.747 μm. Also, the corresponding values of (imaginary) effective index for (II, y, cyan) and (I, y, red) modes are close to each other at λ = 0.735 μm. The dashed lines (blue and cyan) are for the plasmonic modes.
Fig. 9
Fig. 9 Spectral variation of amplitude sensitivity for (a) guided mode I, and (b) guided mode II when na = 1.37. From these plots, it can be observed that the maximum values of the amplitude sensitivity are SA (I, x) = 215.0 RIU−1 for λ = 0.752 μm, SA (I, y) = 328.9 RIU−1 for λ = 0.741 μm, SA (II, x) = 227.7 RIU−1 for λ = 0.744 μm, which is close to the resonant wavelength λ (I, x) = 0.747 μm, and SA (II, y) = 271.0 RIU−1 for λ = 0.734 μm, which is close to the resonant wavelength λ (I, y) = 0.735 μm.
Fig. 10
Fig. 10 Spectral variation of imaginary part of the effective index near the loss matching points: (λ = 0.591 μm when na = 1.33 and λ = 0.675 μm when na = 1.37) for the core mode (III, x, magenta) and (λ = 0.590 μm when na = 1.33 and λ = 0.669 μm when na = 1.37) for the core mode (III, y, black).

Tables (2)

Tables Icon

Table 1 Values of δλres [nm], δλ0.5 [nm], SA [RIU−1], α [dB/cm], P1, P2, Δλ [μm] and λ [μm] corresponding to the core modes (I, x) and (I, y) for three values of the analyte RI (na = 1.33, na = 1.37 and na = 1.39).

Tables Icon

Table 2 Values of δλres [nm], δλ0.5 [nm], SA [RIU−1], α [dB/cm], P1, P2, Δλ [μm] and λ [μm] corresponding to the core modes (II, x) and (II, y) for three values of the analyte RI (na = 1.33, na = 1.37 and na = 1.39).

Metrics