Abstract

We demonstrate here a miniature broadband (up to ~12.8 MHz) fiber-tip photoacoustic probe with ~68.32-μm thick MoS2-polydimethylsiloxane (PDMS) composite coating for ultrasound velocity adjustment by the regressive dependence on the temperature and density of saline solution. The composite was applied to the tip of a double-clad fiber with an outer diameter of 125 μm using drop casting. Under a 5-ns pulsed laser excitation, the developed probe sensitivities to temperature and density in the range of 20-50 °C and 0.99-1.10 g/cm3 were investigated in terms of the change in velocity and attenuation of ultrasonic wave transmitting in the saline solution. An excellent goodness of fit (R2>0.99) and significance of the binary linear regression (F>>F0.01) were achieved with the corresponding mean relative errors of 0.38% and 0.12% for measured temperatures and densities, along with a tunable range of 1478.51 to 1679.13 m/s. The proposed technique could therefore be extended for in situ matching ultrasound velocity of coupling liquid at the transducer-tissue boundary in optoacoustic imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband miniature fiber optic ultrasound generator

Xiaotian Zou, Nan Wu, Ye Tian, and Xingwei Wang
Opt. Express 22(15) 18119-18127 (2014)

A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy

Joon-Mo Yang, Ruimin Chen, Christopher Favazza, Junjie Yao, Chiye Li, Zhilin Hu, Qifa Zhou, K. Kirk Shung, and Lihong V. Wang
Opt. Express 20(21) 23944-23953 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  2. P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
    [Crossref]
  3. G. E. P. M. Van Venrooij, “Measurement of ultrasound velocity in human tissue,” Ultrasonics 9(4), 240–242 (1971).
    [Crossref] [PubMed]
  4. G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
    [Crossref] [PubMed]
  5. Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266–2268 (2010).
    [Crossref] [PubMed]
  6. J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
    [Crossref]
  7. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  8. J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
    [Crossref] [PubMed]
  9. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
    [Crossref]
  10. X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
    [Crossref]
  11. S. D. Richards, “The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater,” J. Acoust. Soc. Am. 103(1), 205–211 (1998).
    [Crossref]
  12. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
    [Crossref]
  13. C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
    [Crossref] [PubMed]
  14. X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
    [Crossref] [PubMed]
  15. T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
    [Crossref] [PubMed]
  16. S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
    [Crossref]
  17. C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
    [Crossref]
  18. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  19. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
    [Crossref] [PubMed]
  20. F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
    [Crossref] [PubMed]

2018 (2)

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

2017 (2)

X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

2016 (2)

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

2015 (4)

C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
[Crossref] [PubMed]

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

2014 (3)

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

2010 (1)

2009 (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

2008 (2)

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

1998 (1)

S. D. Richards, “The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater,” J. Acoust. Soc. Am. 103(1), 205–211 (1998).
[Crossref]

1993 (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

1971 (1)

G. E. P. M. Van Venrooij, “Measurement of ultrasound velocity in human tissue,” Ultrasonics 9(4), 240–242 (1971).
[Crossref] [PubMed]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Alles, E. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Ashworth, M.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bear, J. C.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Beard, P. C.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bell, K.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Bertazzo, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bézière, N.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Bhachu, D. S.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Branca, R. T.

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

Carmalt, C. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Chen, J.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Cheng, L.

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Chester, A. H.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Colchester, R. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

David, A. L.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Deán-Ben, X. L.

X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
[Crossref]

Desjardins, A. E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Diot, G.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Dubikovskaya, E.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Emelianov, S. Y.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Fan, S. C.

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Feng, L.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Franz, D.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Fromme, T.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Galiana, G.

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

Gong, H.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Gong, X.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Gu, X.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Guo, T. T.

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Hajireza, P.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Hauner, H.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Ho, H. L.

Holzapfel, C.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Hu, D.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Jenista, E. R.

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

Jin, W.

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Karampinos, D. C.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Karlas, A.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Kim, I. S.

C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
[Crossref] [PubMed]

Klingenspor, M.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Latif, N.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Lauhon, L. J.

C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
[Crossref] [PubMed]

Li, C.

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Lin, Y.

Liu, C.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Liu, C.-H.

C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
[Crossref] [PubMed]

Liu, T.

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Liu, X.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Liu, Z.

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Maneas, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Mosse, C. A.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Noimark, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Ntziachristos, V.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Ourselin, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Ovsepian, S. V.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Özbek, A.

X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
[Crossref]

Papakonstantinou, I.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Paproski, R. J.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Parkin, I. P.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Paul-Yuan, K.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Poduval, R. K.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Qi, Y.

Qian, X.

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

Razansky, D.

X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
[Crossref]

Reber, J.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Richards, S. D.

S. D. Richards, “The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater,” J. Acoust. Soc. Am. 103(1), 205–211 (1998).
[Crossref]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Shen, S.

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

Sheng, Z.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Shi, W.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Shi, X.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Song, L.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Sun, B.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Tan, Y.

Tian, Y.

Treeby, B. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Tsolaki, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Van Venrooij, G. E. P. M.

G. E. P. M. Van Venrooij, “Measurement of ultrasound velocity in human tissue,” Ultrasonics 9(4), 240–242 (1971).
[Crossref] [PubMed]

Wang, C.

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Wang, F.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Wang, X.

Warren, W. S.

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

Willershäuser, M.

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wu, H.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Wu, N.

Xiao, J.

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Xing, D.

Yang, F.

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, S.

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yuan, Y.

Zemp, R. J.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Zhang, E. Z.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zhao, T.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zheng, H.

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Zou, X.

Adv. Funct. Mater. (2)

J. Chen, C. Liu, D. Hu, F. Wang, H. Wu, X. Gong, X. Liu, L. Song, Z. Sheng, and H. Zheng, “Single-layer MoS2 nanosheets with amplifed photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors,” Adv. Funct. Mater. 26(47), 8715–8725 (2016).
[Crossref]

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Adv. Mater. (1)

T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26(21), 3433–3440 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Cell Metab. (1)

J. Reber, M. Willershäuser, A. Karlas, K. Paul-Yuan, G. Diot, D. Franz, T. Fromme, S. V. Ovsepian, N. Bézière, E. Dubikovskaya, D. C. Karampinos, C. Holzapfel, H. Hauner, M. Klingenspor, and V. Ntziachristos, “Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients,” Cell Metab. 27(3), 689–701.e4 (2018).
[Crossref] [PubMed]

Front Optoelectron. (1)

X. L. Deán-Ben, A. Özbek, and D. Razansky, “Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging,” Front Optoelectron. 10(3), 280–286 (2017).
[Crossref]

J. Acoust. Soc. Am. (2)

S. D. Richards, “The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater,” J. Acoust. Soc. Am. 103(1), 205–211 (1998).
[Crossref]

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

J. Biomed. Opt. (1)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[Crossref] [PubMed]

Light Sci. Appl. (1)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Microsyst. Technol. (1)

C. Li, J. Xiao, T. T. Guo, S. C. Fan, and W. Jin, “Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors,” Microsyst. Technol. 21(11), 2297–2306 (2015).
[Crossref]

Nano Lett. (1)

C.-H. Liu, I. S. Kim, and L. J. Lauhon, “Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime,” Nano Lett. 15(10), 6727–6731 (2015).
[Crossref] [PubMed]

Nanoscale (1)

X. Qian, S. Shen, T. Liu, L. Cheng, and Z. Liu, “Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7(14), 6380–6387 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate temperature imaging based on intermolecular coherences in magnetic resonance,” Science 322(5900), 421–424 (2008).
[Crossref] [PubMed]

Ultrasonics (1)

G. E. P. M. Van Venrooij, “Measurement of ultrasound velocity in human tissue,” Ultrasonics 9(4), 240–242 (1971).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Fabrication process of the developed PA probe. Microscope (b) front and (c) oblique views of MoS2 nanosheets-covered fiber tip before PDMS encapsulation. (d) Microscope side view of ferrule endface covered with MoS2 coating. (e) Microscope oblique view of fiber-ferrule assembly covered with MoS2-PDMS composite. (f) Picture of the fabricated PA probe. (g) Measured F-P interference spectrum.
Fig. 2
Fig. 2 (a) Schematic diagram of experimental setup. (b) Picture of the acrylic glass tube equipped with the developed probe and PZT.
Fig. 3
Fig. 3 (a) Time and (b) frequency domain responses of measured PA signal. Inset in (a): trigger signal and polymer-induced ultrasonic signal.
Fig. 4
Fig. 4 Dependence of measured PA signal on (a) density when T = 24°C and (b) temperature when ρ = 0.997 g/cm3.
Fig. 5
Fig. 5 (a) Binary linear regression of v, T and ρ, and (b) the resulting fitting residual error.
Fig. 6
Fig. 6 (a) Binary linear regression of U, T and ρ, and (b) the resulting fitting residual error.
Fig. 7
Fig. 7 The relative error distribution of measured T and ρ values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v=1.51T+1411.99ρ+50.44.
U=3.343× 10 4 T2.224× 10 2 ρ+6.674× 10 2 .

Metrics