Abstract

Recyclable utilization of light energy is essential for current information processing. Photochromic films including azopolymers play a key role in capturing photons, in which many optical manipulations can be achieved. Commonly, inorganic nanoparticles are incorporated into organic azopolymers to increase photo-excitation efficiency and reduce the volume shrinkage rate. However, the aggregation of azopolymers and the uneven distribution of nanoparticles can affect both the material transparency and chemical activity. Reversibility of photo-transformation for such a photochromic system is thus inhibited. Here, a new method is proposed that titania porous films with high optical transparency are used as a nano-template for azopolymer deposition. The results showed that inorganic nanoporous structures not only enhance dye adsorption but also inhibit azopolymer aggregation. In a holographic recording, the diffractive signal is increased 3.6 fold and kept constant for a long time with the support of the TiO2 framework. Based on the property, erasable hologram reconstruction is obtained in the nano-hybrid film by the alternated excitation of coherent lights and single light from a blue laser. This work shows a bright way to inhibit molecule aggregation in solid matrices and contributes to exploit updatable photo-transformation devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors

Shuangyan Liu, Shencheng Fu, Xintong Zhang, Xinnong Wang, Lihong Kang, Xiuxiu Han, Xi Chen, Jiarui Wu, and Yichun Liu
Opt. Mater. Express 8(5) 1143-1153 (2018)

Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers

Meiling Zheng, Xin Xie, Zhiying Zhang, Feng Shi, Xiuli Wang, Shencheng Fu, and Yichun Liu
Appl. Opt. 53(25) 5815-5823 (2014)

Nonvolatile plasmonic holographic memory based on photo-driven ion migration

Shuangyan Liu, Shencheng Fu, Xiuxiu Han, Xinnong Wang, Ruiya Ji, Xintong Zhang, and Yichun Liu
Appl. Opt. 56(24) 6942-6948 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
    [Crossref]
  2. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
    [Crossref] [PubMed]
  3. M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45(11), 2459–2464 (2006).
    [Crossref] [PubMed]
  4. F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [Crossref] [PubMed]
  5. A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
    [Crossref] [PubMed]
  6. D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
    [Crossref] [PubMed]
  7. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  8. K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
    [Crossref]
  9. K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
    [Crossref] [PubMed]
  10. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626–3637 (2009).
    [Crossref] [PubMed]
  11. P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
    [Crossref]
  12. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Pol. Phys. 52(3), 163–182 (2014).
    [Crossref]
  13. I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
    [Crossref] [PubMed]
  14. A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
    [Crossref] [PubMed]
  15. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  16. K. Noda, K. Kawai, T. Sasaki, N. Kawatsuki, and H. Ono, “Multilevel anisotropic diffractive optical elements fabricated by means of stepping photo-alignment technique using photo-cross-linkable polymer liquid crystals,” Appl. Opt. 53(12), 2556–2561 (2014).
    [Crossref] [PubMed]
  17. J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
    [Crossref]
  18. L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
    [Crossref]
  19. H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
    [Crossref] [PubMed]
  20. K. H. Kim and Y. C. Jeong, “Nanoindentation study of optically patterned surface relief grating of azobenzene polymers,” Opt. Express 24(22), 25242–25249 (2016).
    [Crossref] [PubMed]
  21. W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
    [Crossref]
  22. A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
    [Crossref]
  23. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
    [Crossref]
  24. T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
    [Crossref]
  25. O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
    [Crossref]
  26. N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
    [Crossref]
  27. C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
    [Crossref]
  28. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303–1311 (1966).
    [Crossref] [PubMed]
  29. W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
    [Crossref]
  30. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
    [Crossref] [PubMed]
  31. M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
    [Crossref]
  32. J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
    [Crossref] [PubMed]
  33. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
    [Crossref] [PubMed]
  34. L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
    [Crossref]
  35. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO(2) nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
    [Crossref] [PubMed]
  36. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
    [Crossref]
  37. H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
    [Crossref]
  38. G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
    [Crossref]
  39. L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
    [Crossref]
  40. L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
    [Crossref]
  41. S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
    [Crossref]
  42. M. S. Mahmud, I. Naydenova, N. Pandey, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Holographic recording in acrylamide photopolymers: thickness limitations,” Appl. Opt. 48(14), 2642–2648 (2009).
    [Crossref] [PubMed]
  43. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
    [Crossref] [PubMed]
  44. D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
    [Crossref]
  45. E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
    [Crossref]
  46. N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
    [Crossref]
  47. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
    [Crossref]

2018 (2)

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

2017 (3)

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

2016 (8)

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

K. H. Kim and Y. C. Jeong, “Nanoindentation study of optically patterned surface relief grating of azobenzene polymers,” Opt. Express 24(22), 25242–25249 (2016).
[Crossref] [PubMed]

I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

2015 (4)

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

2014 (5)

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Pol. Phys. 52(3), 163–182 (2014).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

K. Noda, K. Kawai, T. Sasaki, N. Kawatsuki, and H. Ono, “Multilevel anisotropic diffractive optical elements fabricated by means of stepping photo-alignment technique using photo-cross-linkable polymer liquid crystals,” Appl. Opt. 53(12), 2556–2561 (2014).
[Crossref] [PubMed]

2013 (2)

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
[Crossref]

2012 (2)

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

2011 (1)

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

2010 (3)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
[Crossref]

2009 (3)

2008 (2)

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

2007 (1)

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

2006 (2)

2005 (5)

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
[Crossref] [PubMed]

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
[Crossref] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[Crossref]

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

2003 (1)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

1999 (1)

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

1998 (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
[Crossref]

1966 (1)

Alshehri, A. M.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Altürk, S.

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

Anderson, K. E.

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

Andrzejewski, L.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Atalay, Y.

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

Audorff, H.

H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
[Crossref] [PubMed]

Augustovs, P.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Avci, D.

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

Ayres, M.

Ayres, M. R.

Babeva, T.

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Baig, S.

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Barrett, C. J.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Bartkiewicz, S.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Bastiaansen, C. W.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Berberova, N.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Bezrodnyj, V. I.

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

Bhardwaj, R.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Bian, S.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Bougdid, Y.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Broer, D. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Bruder, F. K.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Cao, L.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Chechik, V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Chen, C. W.

I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Chi, C. H.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Chikama, K.

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Chromik, R. R.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Chuprina, N. G.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Curtis, K.

Curtis, K. R.

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

Daskalova, D.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Davidenko, I. I.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Davidenko, N. A.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Dragostinova, V.

L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
[Crossref]

Escuti, M. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Fabbri, F.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Fäcke, T.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Fafard, M.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Fally, M.

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

Fiorini, C.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
[Crossref]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Frech-Baronet, J.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Fukami, T.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Gacoin, T.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Geltenbort, P.

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

Goldenberg, L. M.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Hagen, R.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Hao, J.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

He, Z.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Helliwell, P.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Hidaka, M.

Ho, T. J.

I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Hoskins, A.

Hou, R.

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

Hsieh, W. Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Ishow, E.

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

Jallapuram, R.

Jeong, Y. C.

K. H. Kim and Y. C. Jeong, “Nanoindentation study of optically patterned surface relief grating of azobenzene polymers,” Opt. Express 24(22), 25242–25249 (2016).
[Crossref] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[Crossref]

Jiang, Y.

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Jin, G.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Kador, L.

H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
[Crossref] [PubMed]

Kaivola, M.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Kallepalli, D. L.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Kang, J. W.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Kawai, K.

Kawamoto, M.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Kawamura, G.

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

Kawatsuki, N.

Khoo, I. C.

I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Kim, D. Y.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Kim, J. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, J. P.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, K. H.

Kim, M. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, W. S.

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[Crossref]

Kinashi, K.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Klepp, J.

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

Kokars, V.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Kostadinova, D.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Kozma, A.

Kumar, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Lagugné-Labarthet, F.

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

Lahlil, K.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Lassailly, Y.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Lebel, O.

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

Lee, J. S.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Lefin, P.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
[Crossref]

Leith, E. N.

Levesque, L.

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

Li, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Li, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Liao, Y.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Lin, S. H.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Liu, W.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Loos, J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Lu, H.

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Mahimwalla, Z.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Mahmud, M. S.

Mao, W.

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Marinova, V.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Marks, J.

Marquez, D. T.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Martin, S.

Martinelli, L.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Massey, N.

McLeod, R. R.

Miniewicz, A.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Mitsube, K.

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

Motoishi, S.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Moujdi, S.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Naydenova, I.

Nazarova, D.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
[Crossref]

Nedelchev, L.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
[Crossref]

Nesterenko, D. V.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Ni, M.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Noda, K.

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Nunzi, J. M.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
[Crossref]

Nussbaumer, R.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Ohmori, K.

Ono, H.

Ozols, A.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Pandey, N.

Park, J. K.

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[Crossref]

Pavlov, V. A.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Peng, H.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Peretti, J.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Pol. Phys. 52(3), 163–182 (2014).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Pruner, C.

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rahmouni, A.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Rölle, T.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Rutkis, M.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Sabat, R. G.

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

Sakai, W.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Sakhno, O. V.

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

Samuelson, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Sánchez, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Sasaki, T.

Sassa, T.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Scaiano, J. C.

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Schab-Balcerzak, E.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Schmidt, H. W.

H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
[Crossref] [PubMed]

Sekkat, Z.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Pol. Phys. 52(3), 163–182 (2014).
[Crossref]

Shimada, K. I.

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

Shimano, T. I.

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Silva, D. L.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
[Crossref]

Smirnova, T. N.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

Snell, K. E.

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

Sobolewska, A.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Sorelli, L.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Stoykova, E.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Strijkova, V.

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

Studzinsky, S. L.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Stumpe, J.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

Sun, Q.

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Sun, X.

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Suzuki, N.

Tamer, Ö.

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

Tarasenko, V. V.

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Toal, V.

Tofini, A.

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

Tokmakovs, A.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Tomita, Y.

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Tsutsumi, N.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Upatnieks, J.

van Heesch, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Vapaavuori, J.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Vu, A. D.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Walker, R.

H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
[Crossref] [PubMed]

Wang, J.

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Wang, M. R.

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Weiser, M. S.

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Williams, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

Wu, S.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Xie, X.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Xue, Z.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Yabuhara, Y.

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Yang, Z.

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Yoo, S. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Yu, D.

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Zarins, E.

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Zawada, J.

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Zhang, F.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Zhang, Z.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Zhu, C.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Zong, S.

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Adv. Funct. Mater. (1)

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

F. K. Bruder, R. Hagen, T. Rölle, M. S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyj, and J. Stumpe, “Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles,” Appl. Phys. B 80(8), 947–951 (2005).
[Crossref]

Appl. Phys. Lett. (4)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

J. Klepp, C. Pruner, Y. Tomita, K. Mitsube, P. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100(21), 214104 (2012).
[Crossref] [PubMed]

W. S. Kim, Y. C. Jeong, and J. K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87(1), 012106 (2005).
[Crossref]

L. Cao, S. Wu, J. Hao, C. Zhu, Z. He, Z. Zhang, S. Zong, F. Zhang, and G. Jin, “Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite,” Appl. Phys. Lett. 111(14), 141104 (2017).
[Crossref]

Chem. Mater. (1)

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

J. Appl. Phys. (2)

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108(8), 083540 (2010).
[Crossref]

N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Tarasenko, and S. L. Studzinsky, “Adjustment of diffraction efficiency of polarization holograms in azobenzene polymers films using electric field,” J. Appl. Phys. 122(1), 013101 (2017).
[Crossref]

J. Mater. Chem. (1)

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9(9), 1941–1955 (1999).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

A. Tofini, L. Levesque, O. Lebel, and R. G. Sabat, “Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO2 laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(5), 1083–1091 (2018).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Anoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

J. Mol. Struct. (1)

S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, “1H-pyrazole-3-carboxylic acid: Experimental and computational study,” J. Mol. Struct. 1164, 28–36 (2018).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” J. Opt. A, Pure Appl. Opt. 7(1), 71–82 (1998).
[Crossref]

J. Photoch. Photobio. A (1)

L. Nedelchev, D. Nazarova, and V. Dragostinova, “Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence,” J. Photoch. Photobio. A 261, 26–30 (2013).
[Crossref]

J. Phys. Chem. B (3)

H. Audorff, R. Walker, L. Kador, and H. W. Schmidt, “Polarization dependence of the formation of surface relief gratings in azobenzene-containing molecular glasses,” J. Phys. Chem. B 113(11), 3379–3384 (2009).
[Crossref] [PubMed]

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

J. Polym. Sci. Pol. Phys. (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. Pol. Phys. 52(3), 163–182 (2014).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

G. Kawamura, “Ag-doped inorganic-organic hybrid films for rewritable hologram memory application,” J. Sol-Gel Sci. Technol. 79(2), 374–380 (2016).
[Crossref]

Langmuir (2)

K. E. Snell, R. Hou, E. Ishow, and F. Lagugné-Labarthet, “Enhanced rates of photoinduced molecular orientation in a series of molecular glassy thin films,” Langmuir 31(26), 7296–7305 (2015).
[Crossref] [PubMed]

A. Sobolewska, J. Zawada, and S. Bartkiewicz, “Biphotonic photochromic reaction results in an increase in the efficiency of the holographic recording process in an azo polymer,” Langmuir 30(1), 17–21 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Macromolecules (1)

M. Ni, H. Peng, Y. Liao, Z. Yang, Z. Xue, and X. Xie, “3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”,” Macromolecules 48(9), 2958–2966 (2015).
[Crossref]

Mater. Sci. Eng. C (1)

O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposites,” Mater. Sci. Eng. C 28(1), 28–35 (2008).
[Crossref]

Nanotechnology (1)

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Nature (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

NPG Asia Mater. (1)

K. Kinashi, T. Fukami, Y. Yabuhara, S. Motoishi, W. Sakai, M. Kawamoto, T. Sassa, and N. Tsutsumi, “Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms,” NPG Asia Mater. 8(9), e311 (2016).
[Crossref]

Opt. Commun. (1)

W. Mao, Q. Sun, S. Baig, H. Lu, and M. R. Wang, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Opt. Commun. 355, 256–260 (2015).
[Crossref]

Opt. Eng. (1)

K. I. Shimada, T. I. Shimano, K. E. Anderson, and K. R. Curtis, “New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system,” Opt. Eng. 53(2), 025102 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

H. Liu, D. Yu, J. Wang, Y. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (2)

N. Berberova, D. Daskalova, V. Strijkova, D. Kostadinova, D. Nazarova, L. Nedelchev, E. Stoykova, V. Marinova, C. H. Chi, and S. H. Lin, “Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials,” Opt. Mater. 64, 212–216 (2017).
[Crossref]

E. Zarins, A. Tokmakovs, V. Kokars, A. Ozols, P. Augustovs, and M. Rutkis, “Triphenyl group containing molecular glasses of azobenzene for photonic applications,” Opt. Mater. 53, 146–154 (2016).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

D. L. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

I. C. Khoo, C. W. Chen, and T. J. Ho, “High efficiency holographic Bragg grating with optically prolonged memory,” Sci. Rep. 6(1), 36148 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Chemical structure and photo-transformation of PDR19.
Fig. 2
Fig. 2 (a, b) Fabrication process of TiO2 nanoporous films. (c) Obtaining of PDR19/TiO2(n). (d–f) Preparation of PDR19/THF solution. (g) Photograph of PDR19/TiO2 films on the “NENU” printed paper.
Fig. 3
Fig. 3 Top-viewed and cross-sectional SEM images TiO2 (a, c) and PDR19/TiO2(3) (b, d) films. (e) Size distribution histograms and cumulative percentage of volume fraction of pore size on the surface of TiO2(3) film derived from SEM photographs.
Fig. 4
Fig. 4 Optical setup for holographic recording system. BS, beam splitter; M, mirror; RP, retardation plate; L, lens.
Fig. 5
Fig. 5 Absorption spectra in the UV-Vis region (350–900 nm) of the PDR19/THF solution, pure PDR19, PDR19/TiO2(1), PDR19/TiO2(3) and PDR19/TiO2(6) films. The inset graph presents the dependence of maximum absorbance and absorption peak position on dip-coating times of titania (n). The dot line is the guide for eyes.
Fig. 6
Fig. 6 Temporal evolution of the first-order diffraction efficiency in p-p recording configuration for pure PDR19, PDR19/TiO2(1), PDR19/TiO2(3) and PDR19/TiO2(6) films.
Fig. 7
Fig. 7 (a) Diffraction Efficiency of PDR19/TiO2(3) film with different recording powers (5 mW, 8 mW, 10 mW, 12 mW and 15 mW). (b) Dependence of maximum diffraction efficiency of PDR19/TiO2(3) on writing light powers.
Fig. 8
Fig. 8 Time dependence of the first-order diffraction efficiency in writing and erasing processes for pure PDR19 and PDR19/TiO2(3) films with (p-p) polarization configurations. (b) Molecular distribution in PDR19/TiO2(3) and pure PDR19 films before and after the coherent lights irradiation.
Fig. 9
Fig. 9 (a) Writing process with two coherent blue lights for stored “Ruby” holograms in the PDR19/TiO2(3) and erasing process for the stored holograms in the PDR19/TiO2(3).

Tables (2)

Tables Icon

Table 1 Kinetic Parameters Obtained by Fitting to the Holographic Recording Experiments of Pure PDR19, PDR19/TiO2(1, 3 and 6) Films

Tables Icon

Table 2 Kinetic Parameters Obtained by Fitting to the Holographic Recording Experiments of PDR19/TiO2(3) Film with Different Recording Light Powers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η ( t ) = { 2πd λ Δ n max [ 1exp( R r t ) ]exp( R re t ) } 2 + sin 2 { d 2 Δ α max [ 1exp( R a t ) ]exp( R ae t ) },

Metrics