Abstract

A fast frequency scanning optoelectronic oscillator (OEO) based on Fourier domain mode locking (FDML) and the deamplification of stimulated Brillouin scattering (SBS) is proposed and experimentally demonstrated. The SBS is used to realize a fast frequency scanning microwave photonics filter (MPF). By synchronizing the scanning period of the MPF to the cavity round-trip time, the OEO can be made to operate in the FDML regime. Tunable linearly chirped microwave waveforms are generated in the experiment with a chirp rate up to 0.85 GHz/μs and a time-bandwidth product as large as 23,850. The proposed fast frequency scanning FDML OEO can find applications in modern radar and communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering

Huanfa Peng, Yongchi Xu, Xiaofeng Peng, Xiaoqi Zhu, Rui Guo, Feiya Chen, Huayang Du, Yuanxiang Chen, Cheng Zhang, Lixin Zhu, Weiwei Hu, and Zhangyuan Chen
Opt. Express 25(9) 10287-10305 (2017)

Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator

Tengfei Hao, Jian Tang, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(26) 33582-33591 (2018)

Dual-chirp Fourier domain mode-locked optoelectronic oscillator

Tengfei Hao, Jian Tang, Nuannuan Shi, Wei Li, Ninghua Zhu, and Ming Li
Opt. Lett. 44(8) 1912-1915 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).
  2. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).
  3. M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
    [Crossref]
  4. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  5. Tektronix arbitrary waveform generators AWG7000 series datasheet, http://www.tek.com/datasheet/arbitrarywaveform-generators-7 .
  6. D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24(12), 853–855 (1999).
    [Crossref] [PubMed]
  7. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21(5), 6249–6256 (2013).
    [Crossref] [PubMed]
  8. M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
    [Crossref]
  9. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  10. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  11. A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
    [Crossref] [PubMed]
  12. M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
    [Crossref]
  13. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  14. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  15. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  16. T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
    [Crossref]
  17. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  18. M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
    [Crossref]
  19. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  20. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]
  21. F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, and X. Zhang, “An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter,” Opt. Express 21(14), 16381–16389 (2013).
    [Crossref] [PubMed]
  22. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
    [Crossref] [PubMed]
  23. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
    [Crossref]
  24. T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
    [Crossref] [PubMed]
  25. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  27. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [Crossref] [PubMed]
  28. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref] [PubMed]

2018 (2)

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

2017 (2)

2015 (1)

2013 (4)

2012 (3)

M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

2011 (2)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

2010 (2)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

2005 (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

2002 (1)

2000 (1)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[Crossref]

1999 (1)

1996 (1)

Aditya, S.

Ashrafi, R.

Azaña, J.

Bolea, M.

M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
[Crossref]

Capmany, J.

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Cen, Q.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Chen, F.

Chen, Y.

Chen, Z.

Dai, Y.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Dezfooliyan, A.

Domenech, D.

Du, H.

Guo, P.

Guo, R.

Han, Y.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

Hao, T.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

Hu, W.

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Jiang, F.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Kikuchi, K.

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Lam, H. Q.

LaRochelle, S.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24(12), 853–855 (1999).
[Crossref] [PubMed]

Lee, K. E. K.

Li, M.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express 21(5), 6249–6256 (2013).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
[Crossref]

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

Li, W.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Lim, P. H.

Maleki, L.

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Mora, J.

M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

Peng, H.

Peng, X.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Rius, M.

M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
[Crossref]

Scholtz, R. A.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[Crossref]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shum, P. P.

Sun, T.

Takushima, Y.

Tanemura, T.

Tang, J.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

Weiner, A. M.

A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24(12), 853–855 (1999).
[Crossref] [PubMed]

Win, M. Z.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[Crossref]

Wong, J. H.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xie, X.

Xu, Y.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yao, J.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yao, X. S.

Zhang, C.

Zhang, X.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zhou, J.

Zhu, L.

Zhu, N.

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany, and M. Li, “Toward monolithic integration of OEOs: From systems to chips,” J. Lightwave Technol. 36(19), 4565–4582 (2018).
[Crossref]

Zhu, X.

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

M. Rius, M. Bolea, J. Mora, and J. Capmany, “Incoherent photonic processing for chirped microwave pulse generation,” IEEE Photonics Technol. Lett. 29(1), 7–10 (2017).
[Crossref]

M. Li, W. Li, and J. Yao, “Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter,” IEEE Photonics Technol. Lett. 24(14), 1251–1253 (2012).
[Crossref]

IEEE Trans. Commun. (1)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nat. Commun. 9(1), 1839 (2018).
[Crossref] [PubMed]

Nat. Photonics (4)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Other (4)

Tektronix arbitrary waveform generators AWG7000 series datasheet, http://www.tek.com/datasheet/arbitrarywaveform-generators-7 .

D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).

M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the proposed FDML OEO based on the deamplification of SBS. The optical band-pass filter (OBPF) is used to suppress the passband response induced by the gain spectral area of SBS. Optical spectra of the nodes (a, b, and c) are also plotted. λ c1 to λ cn are the wavelength of the TLS during one frequency sweep, where n is an integer. λ p is the wavelength of the pump laser. TLS, tunable laser source; ISO: optical isolator; HNLF, high nonlinear fiber; PC: polarization controller; PD, photodetector.
Fig. 2
Fig. 2 Dynamic frequency window in the FDML OEO cavity. The passband of the MPF changes in time.
Fig. 3
Fig. 3 (a) Setup for frequency response measurement of the MPF. (b) Measured frequency responses with center frequency tuned from 3 GHz to 13 GHz by changing the wavelength of the TLS.
Fig. 4
Fig. 4 The generated linearly chirped microwave waveform (LCMW) centered at 7.5 GHz with a scanning bandwidth of 1.2 GHz. (a) and (b) are the measured spectrum with different span.
Fig. 5
Fig. 5 (a) Measured time domain waveform of the generated LCMW centered at 7.5 GHz with a scanning bandwidth of 1.2 GHz. (b) The instantaneous frequency distribution. (c) The autocorrelation result. Inset: zoom-in view.
Fig. 6
Fig. 6 Reconfigurability of the proposed SBS-based FDML OEO. (a) Bandwidth tuning from 4.5 GHz to 0.55 GHz with a center frequency of 7.5 GHz. (b) Center frequency tuning from 1 GHz to 14.4 GHz with a scanning bandwidth of 1.2 GHz.
Fig. 7
Fig. 7 Measured SSB phase noise of the microwave signal generated by the OEO.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T roundtrip =n× T filter drive ,
λ B = 2 n eff ·Λ m ,

Metrics