Abstract

A temperature sensing system based on a multi-wavelength Brillouin fiber laser (MBFL) is proposed and demonstrated. Two beams of Stokes light are generated in a temperature sensitive fiber and a reference fiber, respectively. Stokes light from temperature sensitive fiber can generate frequency shift with temperature changing, and two beams can produce a microwave signal by beat frequency. Therefore, change of temperature can be accurately measured according to variation of the central frequency of the beat frequency microwave signals. A 3.2 km long dispersion shifted fiber (DSF) is used as temperature sensitive fiber pumped by a Brillouin pump with power of 1.5 W, then more than 20 Stokes light wavelengths can be observed. By using the 18th order Stokes light pair, temperature sensitivity can be 19.93 MHz∕°C. The uncertainty of the temperature measurement is ± 0.125°C.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Triple Brillouin frequency spacing multiwavelength fiber laser with double Brillouin cavities and its application in microwave signal generation

Zhen Wang, Tianshu Wang, Qingsong Jia, Wanzhuo Ma, Qingchao Su, and Peng Zhang
Appl. Opt. 56(26) 7419-7426 (2017)

High sensitivity distributed temperature fiber sensor using stimulated Brillouin scattering

Victor Lambin Iezzi, Sebastien Loranger, and Raman Kashyap
Opt. Express 25(26) 32591-32601 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).
  2. Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).
  3. E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
    [Crossref]
  4. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, and H. Chen, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express 20(27), 28319–28329 (2012).
    [Crossref] [PubMed]
  5. Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, and P. Xiao, “Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain,” Opt. Lett. 36(19), 3837–3839 (2011).
    [Crossref] [PubMed]
  6. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
    [Crossref]
  7. H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
    [Crossref]
  8. Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. F. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).
  9. S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
    [Crossref]
  10. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  11. X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
    [Crossref]
  12. V. L. Iezzi, S. Loranger, M. Marois, and R. Kashyap, “High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber,” Opt. Lett. 39(4), 857–860 (2014).
    [Crossref] [PubMed]
  13. R. Xu and X. Zhang, “Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2006).
  15. A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
    [Crossref]
  16. Z. Zhang, L. Zhan, and Y. Xia, “Tunable self-seeded multiwavelength Brillouin-Erbium fiber laser with enhanced power efficiency,” Opt. Express 15(15), 9731–9736 (2007).
    [Crossref] [PubMed]
  17. W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable hybrid Brillouin-erbium comb fiber laser in a composite cavity with a single-mode tellurite fiber,” Opt. Lett. 37(18), 3786–3788 (2012).
    [Crossref] [PubMed]

2015 (1)

R. Xu and X. Zhang, “Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

2014 (1)

2013 (2)

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

2007 (1)

2006 (2)

J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

2003 (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

2000 (1)

E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1993 (1)

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Ahmad, H.

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

Alavie, A. T.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Awang, N. A.

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

Bellemare, A.

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

Chen, H.

Chen, L.

Chen, X. F.

Cheng, T.

Coroy, T.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Cowle, G. J.

E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Ding, Z.

Du, Y.

Fan, D.

J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).

Gan, J. L.

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

Gao, L.

Gao, W.

Han, Q.

Harun, S. W.

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

Hu, X.

Ibsen, M.

E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Iezzi, V. L.

Jiang, D. S.

J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).

Kang, J. N.

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

Karr, S.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Kashyap, R.

Latif, A. A.

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

Li, Z. Q.

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

Liao, M.

Liu, J.

Liu, K.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, and H. Chen, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express 20(27), 28319–28329 (2012).
[Crossref] [PubMed]

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Liu, S.

Liu, T.

López-Amo, M.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

López-Higuera, J. M.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

Loranger, S.

Marois, M.

Measures, R. M.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Mei, J. C.

J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).

Melle, S. M.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

Meng, Z.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Ohishi, Y.

Quintela, M. A.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rodriguez-Cobo, L.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

Ronnekleiv, E.

E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Rota-Rodrigo, S.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

Shen, Q.

Suzuki, T.

Tang, J.

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Wu, F.

Wu, Z.

Xia, Y.

Xiao, P.

Xu, R.

R. Xu and X. Zhang, “Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Xu, S. H.

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

Yang, X. P.

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

Yang, Z. M.

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

Yao, X. S.

Yin, Z.

Zhan, L.

Zhang, L.

Zhang, X.

R. Xu and X. Zhang, “Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Zhang, Z.

Zhao, Y. T

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

Zulkifli, M. Z.

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Ronnekleiv, M. Ibsen, and G. J. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5(2), 263–266 (1993).
[Crossref]

IEEE Photonics J. (1)

R. Xu and X. Zhang, “Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

IEEE Sens. J. (2)

H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sens. J. 12(7), 2496–2500 (2012).
[Crossref]

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sens. J. 13(6), 2279–2283 (2013).
[Crossref]

J. Appl. Opt (2)

J. C. Mei, D. Fan, and D. S. Jiang, “Temperature sensing performance of polarization maintaining fiber Bragg grating,” J. Appl. Opt 27(2), 137–139 (2006).

Z. Q. Li, J. Tang, J. N. Kang, and Y. T Zhao, “A fiber Bragg grating temperature sensor based on heterodyne detection,” J. Appl. Opt 27(1), 66–72 (2006).

J. Laser Phys (1)

X. P. Yang, J. L. Gan, S. H. Xu, and Z. M. Yang, “Temperature sensing based on a Brillouin fiber microwave generator,” J. Laser Phys 23(4), 045104 (2013).
[Crossref]

J. Lightwave Technol. (2)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. F. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).

Opt. Express (2)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the temperature sensing system. BP: Brillouin pump. EDFA1 and EDFA2: erbium-doped fiber amplifier. ISO: isolator. OC1~OC4: optical coupler. TOF: tunable optical filter. PD: photo-detector. ESA: electrical spectrum analyzer.
Fig. 2
Fig. 2 The output spectrum of MBFL 1 and 2.
Fig. 3
Fig. 3 (a): Each order Stokes light pair after TOF (b): Each order Stokes light pair amplified by EDFA 2
Fig. 4
Fig. 4 Variation situation of central frequency of beat microwave signal by using each order Stokes light pair at different test temperatures.
Fig. 5
Fig. 5 The relationship between the variation of the temperature change of sensing fiber and the central frequency of the beat frequency microwave signals produced by each order Stokes light pair.
Fig. 6
Fig. 6 The power jitter and central frequency drift of the beat frequency microwave signal produced by 18th order Stokes light pair.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v B =2 n e V A / λ BP
f BS 1 = f BP v B
f BS k = f BP k v B
v B (T,0)= v B ( T 0 ,0)(1+ C T )ΔT
f k =k C T ΔT= C T k ΔT

Metrics