Abstract

The plasmonic force due to electromagnetic waves between two metallic walls has been studied earlier for a subwavelength slit taking into consideration only zero mode. In the present paper, the effects of the second mode are analyzed. The higher modes are shown to decrease the attractive force. The magnetic field of the p-wave is compared with the model of a perfect conductor. The difference occurs maximal at the threshold, where the second mode changes its behavior from evanescent to propagating. The effect of possibly changing the attractive force to the repulsive force for a relatively wide slit is found.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of imperfect angular adjustment on plasmonic force

L. L. Frumin, A. K. Tusnin, O. V. Belai, and D. A. Shapiro
Opt. Express 25(25) 31801-31809 (2017)

Optical field and attractive force at the subwavelength slit

David Shapiro, Daniel Nies, Oleg Belai, Matthias Wurm, and Vladimir Nesterov
Opt. Express 24(14) 15972-15977 (2016)

Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits

Pei-Kuen Wei, Yu-Chieh Huang, Ching-Chang Chieng, Fan-Gang Tseng, and Wunshain Fann
Opt. Express 13(26) 10784-10794 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [Crossref]
  2. S. V. Perminov, V. P. Drachev, and S. G. Rautian, “Optics of metal nanoparticle aggregates with light induced motion,” Opt. Express 15, 8639–8648 (2007).
    [Crossref] [PubMed]
  3. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [Crossref] [PubMed]
  4. M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
    [Crossref]
  5. P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
    [Crossref] [PubMed]
  6. M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
    [Crossref]
  7. A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).
  8. J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
    [Crossref]
  9. J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
    [Crossref]
  10. V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
    [Crossref]
  11. V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
    [Crossref]
  12. D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
    [Crossref] [PubMed]
  13. L. L. Frumin, A. K. Tusnin, O. V. Belai, and D. A. Shapiro, “Effects of imperfect angular adjustment on plasmonic force,” Opt. Express 25, 31801–31809 (2017).
    [Crossref] [PubMed]
  14. D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998).
  16. B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
    [Crossref]
  17. M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
    [Crossref]

2017 (1)

2016 (4)

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

2015 (1)

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

2012 (2)

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

2011 (3)

M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
[Crossref]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

2010 (1)

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

2009 (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

2007 (1)

2003 (1)

Aizpurua, J.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Arias-González, J. R.

Barrera, R.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Batson, P.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Belai, O.

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Belai, O. V.

Bogdanov, A. A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

Buetefisch, S.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Darbari, S.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Deng, H.

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

Dogariu, A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).

Drachev, V. P.

Echenique, P.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Friz, P. D.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

Frumin, L.

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

Frumin, L. L.

Ghorbanzadeh, M.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Glascock, M. S.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

Gorkunov, M.

M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Hu, C.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Li, L.

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Maser, J. N.

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Moravvej-Farshi, M.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Naparty, D.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Nesterov, V.

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Nies, D.

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Nieto-Vesperinas, M.

Perminov, S. V.

Petrov, M. I.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

Podivilov, E.

M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
[Crossref]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Rautian, S. G.

Reyes-Coronado, A.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Rivacoba, A.

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Rovey, J. L.

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

Sáenz, J.

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Shalin, A. S.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

Shapiro, D.

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Shapiro, D. A.

Sturman, B.

M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Sukhov, S.

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).

Sukhov, S. V.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

Tusnin, A. K.

Wurm, M.

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Yang, X.

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Europhys. Lett. (1)

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” Europhys. Lett. 94, 64002 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Spacecraft Rockets (2)

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets 52, 1163–1168 (2015).
[Crossref]

J. N. Maser, L. Li, H. Deng, X. Yang, and J. L. Rovey, “Plasmonic force space propulsion,” J. Spacecraft Rockets 53, 998–1000 (2016).
[Crossref]

Laser Photon. Rev. (1)

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photon. Rev. 10, 116–122 (2016).
[Crossref]

Meas. Sci. Technol. (1)

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

Nat. Photonics (1)

A. Dogariu, S. Sukhov, and J. Sáenz, “Optically induced ‘negative forces’,” Nat. Photonics 77, 24–27 (2012).

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

M. Gorkunov, E. Podivilov, and B. Sturman, “Transmission and scattering properties of subwavelength slits in metals,” Phys. Rev. B 83, 035414 (2011).
[Crossref]

Ultramicroscopy (1)

P. Batson, A. Reyes-Coronado, R. Barrera, A. Rivacoba, P. Echenique, and J. Aizpurua, “Nanoparticle movement: plasmonic forces and physical constraints,” Ultramicroscopy 123, 50–58 (2012).
[Crossref] [PubMed]

Other (2)

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” in SPIE Nanoscience+ Engineering, (2016), p. 99222L.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Normal incidence of p-wave to the slit. (b) Eigenvalue q2 of the second mode as a function of dielectric permittivity ε at k0 = 1, 2, 3 (from top downward): calculated numerically (solid line), asymptotic formula (dashed). Inset shows its propagation constant β2 vs eigenvalue q2 at k0 = π: real part (solid line), imaginary part (dot-dash).
Fig. 2
Fig. 2 (a) Dependence of |H(0, 0)|2 on k0. Solid line corresponds to finite ε, dashed to perfect conductor. (b) Relative difference between real metal and perfect conductor.
Fig. 3
Fig. 3 Force between the planes as a function of k0. Dashed line corresponds to single-mode, solid line to two-mode approximation: (a) ε = −100 + 10i, (b) ε = −360 + 60i.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H > ( x , z ) = ν = h ν b ν ( x ) e i β ν z ,
H < ( x , z ) = ( e i k 0 z z + R e i k 0 z z ) e i k 0 x x + a k e i k x i ϰ z d k ,
R = ε cos γ ε sin 2 γ ε cos γ + ε sin 2 γ
e 2 i q ν = ± i g ( q ν , ε ) i + g ( q ν , ε ) , g ( q ν , ε ) = ( 1 ε ) ( k 0 ) 2 ( q ν ) 2 ε q ν .
e 2 i q ν ( 1 2 i k 0 ε q ν ) .
q ν π ν 2 2 k 0 π ν ε , ν = ± 1 , ± 2 ,
ν = + h ν b ν ( x ) = ( 1 + R ) e i k 0 x x + a k e i k x d k , | x | < ,
ν = + β ν h ν b ν ( x ) = ( 1 R ) k 0 z e i k 0 x x + ϰ a k e i k x d k , | x | < ,
ν = + c ν ( x ) β ν h ν b ν ( ) e q M ν | x | = ε ϰ a k e i k x d k , | x | > ,
a k = k 0 z π ϰ ( 1 R ) sinc [ ( k 0 x k ) ] 2 π ϰ ν = + β ν h ν [ f q ν , k + b ν ( ) ε G ( q ν , k ) ] ,
f q ν , k = sinc [ ( q ν k ) ] + sinc [ ( q ν + k ) ] , G ( q , k ) = 2 q cos ( k ) + k sin ( k ) q 2 + k 2 ,
f q ν , k = sinc [ ( q ν k ) ] + sinc [ ( q ν + k ) ] , G ( q , k ) = 2 q cos ( k ) + k sin ( k ) q 2 + k 2 ,
ν = + F μ ν h ν = ( 1 + R ) f μ , k 0 x + ( 1 R ) k 0 z π × f μ , k sinc ( ( k 0 x k ) ) d k ϰ ;
F μ ν = f μ , ν + β ν 2 π ( f ν , k f μ , k + b ( ) ε G ( q M ν , k ) f μ , k ) d k ϰ .
σ ¯ x x = | E x | 2 | E z | 2 | H y | 2 ,
E x = i k 0 H y z = 1 k 0 ν β ν h ν b ν ( ) e i β ν z ,
E z = i k 0 H y x = i k 0 ν q ν h ν d b ν ( ) d x e i β ν z .
σ x x = σ x x 0 + σ x x 2 + σ x x 02 ,
σ x x 0 = 1 x 0 2 [ | β 0 h 0 cos q 0 e i β 0 z | 2 | q 0 h 0 sin q 0 e i β 0 z | 2 x 0 2 | h 0 cos q 0 l e i β 0 z | 2 ] , σ x x 2 = 1 x 0 2 [ | β 2 h 2 cos q 2 e i β 2 z | 2 | q 2 h 2 sin q 2 e i β 2 z | 2 x 0 2 | h 2 cos q 2 e i β 2 z | 2 ] , σ x x 02 = 4 x 0 2 [ β 0 h 0 cos q 0 e i β 0 z ( β 2 h 2 cos q 2 e i β 2 z ) * q 0 h 0 sin q 0 e i β 0 z ( q 2 h 2 sin q 2 e i β 2 z ) * x 0 2 h 0 cos q 0 e i β 0 z ( h 2 cos q 2 e i β 2 z ) * ] .
F L y ( σ x x 0 2 β 0 + σ x x 2 2 β 2 + σ x x 02 β 0 + β 2 + i ( β 2 β 0 ) ) ,