Abstract

A real-time four-level pulse amplitude modulation (PAM4) fiber-invisible laser light communication (IVLLC) and fiber-wireless hybrid system with parallel/orthogonally polarized dual-wavelength scheme is proposed and practically demonstrated. Real-time measurement of the PAM4 bit error rate (BER) is adopted to avoid the complex offline calculation by MATLAB. To our understanding, this study is the first to construct successfully a real-time PAM4 fiber-IVLLC and fiber-wireless hybrid system with parallel/orthogonally polarized dual-wavelength scheme. Through PAM4 signal modulation, parallel/orthogonally polarized dual-wavelength scheme, and fiber-IVLLC/fiber-wireless hybrid architecture, the total transmission capacities of systems are enhanced to eight times. With an in-depth investigation in this real-time PAM4 fiber-IVLLC and fiber-wireless hybrid system, BER, and eye diagrams are observed to perform impressively over the 25-km single-mode fiber transmission with 100-m free-space link/5-m RF wireless transmission. This real-time PAM4 fiber-IVLLC and fiber-wireless hybrid system reveals a notable one not only owing to its advancement in the incorporation of fiber-based backhaul and optical/RF wireless-based extender, but also owing to its advantage in the communication link for providing higher transmission capacities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme

Hai-Han Lu, Chung-Yi Li, Hwan-Wei Chen, Chun-Ming Ho, Ming-Te Cheng, Sheng-Jhe Huang, Zih-Yi Yang, and Xin-Yao Lin
Opt. Express 24(15) 17250-17258 (2016)

Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands

Hai-Han Lu, Hsiao-Wen Wu, Chung-Yi Li, Chun-Ming Ho, Zih-Yi Yang, Ming-Te Cheng, and Chang-Kai Lu
Opt. Express 25(9) 9743-9754 (2017)

Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations

Chung-Yi Li, Hai-Han Lu, Ting-Chieh Lu, Chien-An Chu, Bo-Rui Chen, Chun-Yu Lin, and Peng-Chun Peng
Opt. Express 23(25) 31807-31816 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Jain and M. Hussain, “Improving capacity in wireless heterogeneous networks by mitigation of interference,” Procedia Comput. Sci. 115, 595–606 (2017).
    [Crossref]
  2. Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, ““Hybrid fiber-wireless network: An optimization framework for survivable deployment,” J. Opt. Commun. Netw. 9(6), 466–478 (2017).
    [Crossref]
  3. Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
    [Crossref]
  4. C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
    [Crossref]
  5. H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, S. J. Huang, Z. Y. Yang, and X. Y. Lin, “Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme,” Opt. Express 24(15), 17250–17258 (2016).
    [Crossref] [PubMed]
  6. H. H. Lu, H. W. Wu, C. Y. Li, C. M. Ho, Z. Y. Yang, M. T. Cheng, and C. K. Lu, “Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands,” Opt. Express 25(9), 9743–9754 (2017).
    [Crossref] [PubMed]
  7. B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
    [Crossref]
  8. J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G. K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
    [Crossref] [PubMed]
  9. H. Y. Wang, Y. C. Chi, and G. R. Lin, “Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link,” Opt. Express 24(16), 17654–17669 (2016).
    [Crossref] [PubMed]
  10. Y. W. Chen, J. H. Yan, Y. M. Wang, M. F. Chang, W. R. Peng, and K. M. Feng, “Over 210 Gb/s PDM multiband DDO-OFDM LR-PON downstream with simple self-polarization diversity,” Opt. Express 23(14), 18525–18533 (2015).
    [Crossref] [PubMed]
  11. V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
    [Crossref]
  12. Y. W. Chen, C. Y. Tseng, S. J. Liu, and K. M. Feng, “PDM DDO-OFDM with self-polarization diversity for the backhaul of radio-over-fiber system,” in Conference on Optical Fiber Communication (OFC 2016), pp. Th4A.2.
    [Crossref]
  13. K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, A. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, ““4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
    [Crossref]
  14. H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
    [Crossref] [PubMed]

2017 (3)

2016 (5)

2015 (2)

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Y. W. Chen, J. H. Yan, Y. M. Wang, M. F. Chang, W. R. Peng, and K. M. Feng, “Over 210 Gb/s PDM multiband DDO-OFDM LR-PON downstream with simple self-polarization diversity,” Opt. Express 23(14), 18525–18533 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (1)

2007 (1)

V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
[Crossref]

Agrell, E.

Andrekson, P. A.

Bjørnstad, S.

V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
[Crossref]

Chang, G. K.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G. K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
[Crossref] [PubMed]

Chang, M. F.

Chen, B. R.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

Chen, H. W.

Chen, Y. W.

Cheng, M. T.

Chi, Y. C.

Chou, H. H.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Chu, C. A.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

Dong, Z.

Feng, K. M.

Ghassemlooy, Z.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Guo, L.

Gustavsson, J. S.

Haglund, A.

Hjelme, D. R.

V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
[Crossref]

Ho, C. M.

Huang, S. J.

Hussain, M.

S. Jain and M. Hussain, “Improving capacity in wireless heterogeneous networks by mitigation of interference,” Procedia Comput. Sci. 115, 595–606 (2017).
[Crossref]

Jain, S.

S. Jain and M. Hussain, “Improving capacity in wireless heterogeneous networks by mitigation of interference,” Procedia Comput. Sci. 115, 595–606 (2017).
[Crossref]

Jian, S.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Karlsson, M.

Karout, J.

Larsson, A.

Le-Minh, H.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Li, C. Y.

Liaw, S. K.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Lim, C.

Lin, C. Y.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

Lin, G. R.

Lin, H. H.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

Lin, X. Y.

Liu, J.

Liu, Y.

Lu, C. K.

Lu, H. H.

Nirmalathas, A.

Peng, W. R.

Ranaweera, C.

Shih, T. T.

Su, T.

Sung, J. Y.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Szczerba, K.

Tuft, V. L.

V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
[Crossref]

Wang, H. Y.

Wang, J.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G. K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y. M.

Westbergh, P.

Wong, E.

Wu, B.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Wu, C. J.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

Wu, H. W.

Xu, M.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Yan, F.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Yan, J. H.

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

Y. W. Chen, J. H. Yan, Y. M. Wang, M. F. Chang, W. R. Peng, and K. M. Feng, “Over 210 Gb/s PDM multiband DDO-OFDM LR-PON downstream with simple self-polarization diversity,” Opt. Express 23(14), 18525–18533 (2015).
[Crossref] [PubMed]

Yang, Z. Y.

Yu, J.

Yu, Y.

Yu, Y. L.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

Zheng, J.

Zhu, M.

Zhu, N.

IEEE Photon. J. (3)

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photon. J. 7(6), 7905509 (2015).
[Crossref]

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photon. J. 8(2), 7902810 (2016).
[Crossref]

B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, S. Jian, and G. K. Chang, “Polarization-insensitive remote access unit for radio-over-fiber mobile fronthaul system by reusing polarization orthogonal light waves,” IEEE Photon. J. 8(1), 7200108 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

V. L. Tuft, S. Bjørnstad, and D. R. Hjelme, “Automatic polarization control for packet transmission in a hybrid circuit and packet-switched optical network,” IEEE Photon. Technol. Lett. 19(19), 1460–1462 (2007).
[Crossref]

J. Opt. Commun. Netw. (2)

Opt. Express (4)

Opt. Lett. (2)

Procedia Comput. Sci. (1)

S. Jain and M. Hussain, “Improving capacity in wireless heterogeneous networks by mitigation of interference,” Procedia Comput. Sci. 115, 595–606 (2017).
[Crossref]

Other (1)

Y. W. Chen, C. Y. Tseng, S. J. Liu, and K. M. Feng, “PDM DDO-OFDM with self-polarization diversity for the backhaul of radio-over-fiber system,” in Conference on Optical Fiber Communication (OFC 2016), pp. Th4A.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The architecture of offered real-time PAM4 fiber-IVLLC and fiber-wireless hybrid systems with parallel/orthogonally polarized dual-wavelength scheme.
Fig. 2
Fig. 2 Configuration of multiple wavelengths generator.
Fig. 3
Fig. 3 Optical spectra of the multiple wavelengths generator with/without DI and EDFA simultaneously.
Fig. 4
Fig. 4 Optical spectrum with signals and distortions due to self-beating between dual wavelengths.
Fig. 5
Fig. 5 A pair of doublet lenses (doublet lens 1 and doublet lens 2) is adopted to emanate light from the ferrule of SMF (transmitting side) to the free-space and to conduct light from the free-space into the ferrule of SMF (receiving side).
Fig. 6
Fig. 6 The S21 characteristic of the equalizer.
Fig. 7
Fig. 7 BER values of the 45 Gb/s PAM4 signal for the scenarios of BTB, over 25-km SMF transmission with 100-m free-space link (x-polarization), and over 25-km SMF transmission with 100-m free-space link (y-polarization).
Fig. 8
Fig. 8 Eye diagrams of the 45 Gb/s PAM4 signal for (a) the BTB and (b) over 25-km SMF transmission with 100-m free-space link (x-polarization) scenarios.
Fig. 9
Fig. 9 BER values of the 45 Gb/s PAM4 signal for the conditions of BTB, over 25-km SMF transmission with 5-m RF wireless transmission (x-polarization), and over 25-km SMF transmission with 5-m RF wireless transmission (y-polarization).
Fig. 10
Fig. 10 Eye diagrams of the 45 Gb/s PAM4 signal for the conditions of (a) BTB and (b) over 25-km SMF transmission with 5-m RF wireless transmission (x-polarization).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| S x1 + S x2 + S y1 + S y2 | 2 = | S x1 | 2 + | S x2 | 2 + | S y1 | 2 + | S y2 | 2 +2Re{ S x1 S x2 }+2Re{ S y1 S y2 } +2Re{ S x1 S y1 }+2Re{ S x1 S y2 } +2Re{ S x2 S y1 }+2Re{ S x2 S y2 }
| S x1 + S x2 + S y1 + S y2 | 2 = | S x1 | 2 + | S x2 | 2 + | S y1 | 2 + | S y2 | 2 +2Re{ S x1 S x2 }+2Re{ S y1 S y2 }
d=2×(100×0.14)=28(mm)
r=2.3× 1 SFC×2π =3.6 (mm)
θ= 3.6(μm) 100(mm) =36× 10 6
ω o = [ d 2 + (2θL) 2 ] 1/2 = [ 28 2 + (7.2) 2 ] 1/2 =28.9(mm)
BER= d ij SER log 2 M
BER= 1 2 SE R top +SE R mid + 1 2 SE R bot