Abstract

We demonstrate a novel approach to enhance the modal stability between the modes of a few-mode fiber (FMF) by increasing the effective index differences between these modes. Unlike single mode fibers (SMFs), a FMF guides more than one mode with a larger effective mode area. Mode division multiplexing in FMFs has gained significant importance for potentially high data rate transmission. However, with the increase in the number of modes, a FMF encounters possible coupling between the modes. We proposed two designs of a FMF that supports LP01, LP11, LP21 and LP02 modes, which propagate with larger mode spacing, offering reduced mode coupling and thus enhancing mode stability. The modal stability or effective index difference between the modes is enhanced by more than 26% by introducing a ring of air-holes in the first fiber design. Moreover, a second fiber design is also proposed, where a five modes fiber is transformed to a four modes fiber and the modal stability enhancement is calculated to be more than 30% without affecting the mode quality significantly. It is also shown here that such a FMF is more resilient to both bending loss and mode area variation compared to a standard SMF. Our proposed technique is scalable and can be used for fibers with a higher number of modes to increase the transmission capacity along with reduced mode coupling.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband mode division multiplexer using all-fiber mode selective couplers

Kyung Jun Park, Kwang Yong Song, Young Kie Kim, Jae Hyeon Lee, and Byoung Yoon Kim
Opt. Express 24(4) 3543-3549 (2016)

Intrinsic loss of few-mode fibers

Yaping Liu, Zhiqun Yang, Jian Zhao, Lin Zhang, Zhihong Li, and Guifang Li
Opt. Express 26(2) 2107-2116 (2018)

Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss

Kiminori Sato, Ryo Maruyama, Nobuo Kuwaki, Shoichiro Matsuo, and Masaharu Ohashi
Opt. Express 21(14) 16231-16238 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. M. Secondini and E. Forestieri, “Scope and Limitations of the Nonlinear Shannon Limit,” J. Light. Technol. 35(4), 893–902 (2017).
    [Crossref]
  3. B. Franz and H. Bulow, “Mode group division multiplexing in graded–index multimode fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
    [Crossref]
  4. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [Crossref] [PubMed]
  5. A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Opt. Express 16(23), 18590–18598 (2008).
    [Crossref]
  6. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
    [Crossref]
  7. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.
  8. F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-path interference on few-mode fiber transmission,” Optical Fiber Communication Conference (OFC) (2012), paper OTu1D.2.
  9. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
    [Crossref]
  10. Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
    [Crossref]
  11. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
    [Crossref]
  12. A. Gulistan, S. Ghosh, S. Ramachandran, and B. M. A. Rahman, “Efficient strategy to increase higher order inter-modal stability of a step index multimode fiber,” Opt. Express 25(24), 29714–29723 (2017).
    [Crossref] [PubMed]
  13. J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, and D. Liu, “Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission,” Opt. Lett. 41(13), 3058–3061 (2016).
    [Crossref] [PubMed]
  14. R. A. May and M. N. Zervas, “Few-mode fibers with improved mode spacing,” IEEE Optical Communication (ECOC) (2015), pp. 1–3.
  15. C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, “Characterization of nanoscale features in tapered fractal and photonic crystal fibers,” Opt. Express 19(3), 1860–1865 (2011).
    [Crossref] [PubMed]
  16. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
    [Crossref] [PubMed]
  17. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).
  18. S. Virally, N. Godbout, S. Lacroix, and L. Labonte, “Two-fold symmetric geometries for tailored phasematching in birefringent solid-core air-silica microstructured fibers,” Opt. Express 18(10), 10731–10741 (2010).
    [Crossref] [PubMed]
  19. M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
    [Crossref]
  20. J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headley, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

2014 (1)

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

2013 (1)

B. Franz and H. Bulow, “Mode group division multiplexing in graded–index multimode fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

2012 (1)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (1)

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

2008 (2)

A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Opt. Express 16(23), 18590–18598 (2008).
[Crossref]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (2)

Afshar, S.

Argyros, A.

Astruc, M.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Boivin, D.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Bolle, C.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Bulow, H.

B. Franz and H. Bulow, “Mode group division multiplexing in graded–index multimode fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

Burrows, E. C.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Canning, J.

Chen, X.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Ebendorff-Heidepriem, H.

Esmaeelpour, M.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Essiambre, R. J.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

Feder, K.

Fini, J. M.

Forestieri, E.

M. Secondini and E. Forestieri, “Scope and Limitations of the Nonlinear Shannon Limit,” J. Light. Technol. 35(4), 893–902 (2017).
[Crossref]

Foschini, G. J.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

Franz, B.

B. Franz and H. Bulow, “Mode group division multiplexing in graded–index multimode fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

Fu, S.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Ghosh, S.

Gibson, B. C.

Gnauck, A. H.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Godbout, N.

Goebel, B.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

Gray, S.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Gulistan, A.

Headley, C.

Huntington, S. T.

Kawata, R.

Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
[Crossref]

Kokubun, Y.

Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
[Crossref]

Kramer, G.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

Kuwaki, N.

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.

Labonte, L.

Lacroix, S.

Large, M. C. J.

Li, M. J.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Liang, J.

Liu, A.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Liu, D.

Lwin, R.

Maerten, H.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Maruyama, R.

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.

Mateo, E.

F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-path interference on few-mode fiber transmission,” Optical Fiber Communication Conference (OFC) (2012), paper OTu1D.2.

Matsuo, S.

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.

May, R. A.

R. A. May and M. N. Zervas, “Few-mode fibers with improved mode spacing,” IEEE Optical Communication (ECOC) (2015), pp. 1–3.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Miura, S.

Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
[Crossref]

Mo, Q.

Monro, T. M.

Mori, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

Mumtaz, S.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headley, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
[Crossref] [PubMed]

Ohashi, M.

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.

Peckham, D. W.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Provost, L.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Rahman, B. M. A.

Ramachandran, S.

Randel, S.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Rollinson, C. M.

Ruan, Y.

Rubanov, S.

Ryf, R.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Sakamoto, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

Secondini, M.

M. Secondini and E. Forestieri, “Scope and Limitations of the Nonlinear Shannon Limit,” J. Light. Technol. 35(4), 893–902 (2017).
[Crossref]

Shum, P.

Sierra, A.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

Sillard, P.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Tang, M.

Virally, S.

Wada, M.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

Walton, D. T.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Wang, J.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Wang, T.

F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-path interference on few-mode fiber transmission,” Optical Fiber Communication Conference (OFC) (2012), paper OTu1D.2.

Watanabe, T.

Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
[Crossref]

Westbrook, P. S.

Winzer, P. J.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

Yablon, A. D.

Yamamoto, F.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

Yamamoto, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

Yaman, F.

F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-path interference on few-mode fiber transmission,” Optical Fiber Communication Conference (OFC) (2012), paper OTu1D.2.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Zenteno, L. A.

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Zervas, M. N.

R. A. May and M. N. Zervas, “Few-mode fibers with improved mode spacing,” IEEE Optical Communication (ECOC) (2015), pp. 1–3.

Bell Labs Tech. J. (1)

B. Franz and H. Bulow, “Mode group division multiplexing in graded–index multimode fibers,” Bell Labs Tech. J. 18(3), 153–172 (2013).
[Crossref]

J. Light. Technol. (5)

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28(4), 662–701 (2010).
[Crossref]

M. Secondini and E. Forestieri, “Scope and Limitations of the Nonlinear Shannon Limit,” J. Light. Technol. 35(4), 893–902 (2017).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, and D. W. Peckham, “Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Light. Technol. 30(4), 521–531 (2012).
[Crossref]

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-Mode fibers supporting more than two LP modes for Mode-Division-Multiplexed transmission with MIMO DSP,” J. Light. Technol. 32(14), 2468–2479 (2014).
[Crossref]

M. J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Light. Technol. 27(15), 3010–3016 (2009).
[Crossref]

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (5)

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Relationship between mode-crosstalk and fiber characteristics in few mode fibers,” Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA (2016), pp. 1–3.

F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-path interference on few-mode fiber transmission,” Optical Fiber Communication Conference (OFC) (2012), paper OTu1D.2.

Y. Kokubun, T. Watanabe, S. Miura, and R. Kawata, “What is a mode in few mode fibers?: Proposal of MIMO-free mode division multiplexing using true eigenmodes,” IEICE Electronics Express13(18), (2016).
[Crossref]

R. A. May and M. N. Zervas, “Few-mode fibers with improved mode spacing,” IEEE Optical Communication (ECOC) (2015), pp. 1–3.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for uncoupled Mode-Division Multiplexing transmissions,” 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) Tu.5.LeCervin.7 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Normalized Hy field variation of LP01, LP11, LP21 and LP02 modes along the radius of a step index few-mode fiber, contour field profiles are also shown as insets.
Fig. 2
Fig. 2 A schematic illustration showing air-holes in FMF and change in the refractive index profile along the radius of fiber.
Fig. 3
Fig. 3 Effect on the (a) Δneff and (b) percentage Δneff with a change in the hole’s radius at r = 7.4 μm along the fiber radius.
Fig. 4
Fig. 4 Effect on the (a) Δneff and (b) percentage Δneff with the change in the hole’s array location along the radius of fiber. An array of two hundred air-holes with fixed radius of 40 nm is considered.
Fig. 5
Fig. 5 Normalized Hy fields variations of LP01, LP11, LP21 and LP02 modes along the radius of modified four-mode fiber, field profile contours are also given as insets.
Fig. 6
Fig. 6 Effect on the effective mode areas of a change in the hole’s size introduced at r = 7.4 μm along the radius of modified few-mode fiber.
Fig. 7
Fig. 7 Effect on the percentage stability improvement of a change in the (a) location of hole’s array along the radius (hole radius=50 nm) (b) hole’s size introduced at r = 8.4 μm for the second fiber design.
Fig. 8
Fig. 8 Effect on the effective mode areas of a change in the hole’s size at r = 8.4 μm along the radius of second fiber design.
Fig. 9
Fig. 9 Bending loss of a few-mode fiber without air-holes and with 200 air-holes with different bending radii. The bending loss of our proposed fiber is also shown by red line.
Fig. 10
Fig. 10 Effective area as a function of bending radius for FMF without holes, with holes and a standard SMF.

Tables (1)

Tables Icon

Table 1 Summary of the effective index differences between LP01, LP11, LP21 and LP02 modes and their effective areas after the introduction of air-holes in the proposed fiber designs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π a λ n core 2 n clad 2
% Stability = ( Δ n eff ) with holes ( Δ n eff ) without holes ( Δ n eff ) without holes * 100
A eff = [ | E | 2 d x d y ] 2 | E | 4 d x d y