Abstract

We propose a kind of wavelength division multiplexer (WDM) based on asymmetric directional couplers (ADCs). Wavelength signals are multiplexed into a bus waveguide by converting to different modes using the cascaded ADCs. We design the WDMs with conventional and tapered ADCs and analyze the performance in terms of insertion loss, crosstalk, and fabrication tolerance. Experimental results indicate that the WDM with tapered ADCs has both lower insertion loss (less than 1dB) and crosstalk (less than -23dB), and at the same time it has better fabrication tolerance than conventional ADCs. The ADC-based WDMs, which demonstrate good performance of multiplexing wavelengths, own the advantages of simple structure, high flexibility, and scalability. Since different wavelengths perform mode conversion on the same plane, the proposed WDM can be conveniently integrated on-chip with active and passive devices. Our approach combines both wavelength and mode dimensions, which is different from previous schemes, so it is expected to provide an alternative to developing a promising WDM in integrated silicon-based circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-based wavelength division multiplexer using asymmetric grating-assisted couplers

Lin Zhu, Junqiang Sun, and Yong Zhou
Opt. Express 27(16) 23234-23249 (2019)

Ultracompact and broadband asymmetric directional-coupler-based mode division (de)multiplexer

Kolsoom Mehrabi and Abbas Zarifkar
J. Opt. Soc. Am. B 36(7) 1907-1913 (2019)

On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

Yunhong Ding, Jing Xu, Francesco Da Ros, Bo Huang, Haiyan Ou, and Christophe Peucheret
Opt. Express 21(8) 10376-10382 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
    [Crossref]
  2. K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
    [Crossref] [PubMed]
  3. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  4. S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
    [Crossref]
  5. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
    [Crossref]
  6. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007).
    [Crossref]
  7. B. B. C. Kyotoku, L. Chen, and M. Lipson, "Broad band 1 nm channel spacing silicon-on-insulator wavelength division multiplexer," in Proc. IEEE Conf. Laser Electro-Optics (2009), paper JWA41.
    [Crossref]
  8. P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39(21), 6304–6307 (2014).
    [Crossref] [PubMed]
  9. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31(16), 2785–2792 (2013).
    [Crossref]
  10. F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  11. S.-H. Jeong, S. Tanaka, T. Akiyama, S. Sekiguchi, Y. Tanaka, and K. Morito, “Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers,” Opt. Express 20(23), 26000–26011 (2012).
    [Crossref] [PubMed]
  12. L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
    [Crossref]
  13. D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
    [Crossref]
  14. C. Yao, H.-G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express 20(16), 18248–18253 (2012).
    [Crossref] [PubMed]
  15. S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
    [Crossref]
  16. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15(13), 8300–8308 (2007).
    [Crossref] [PubMed]
  17. B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
    [Crossref] [PubMed]
  18. D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).
  19. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
    [Crossref] [PubMed]
  20. D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
    [Crossref] [PubMed]
  21. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  22. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
    [Crossref] [PubMed]
  23. Y. Liu, Y. Li, M. Li, and J. J. He, “High-sensitivity and wide-range optical sensor based on three cascaded ring resonators,” Opt. Express 25(2), 972–978 (2017).
    [Crossref] [PubMed]
  24. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
    [Crossref] [PubMed]
  25. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
    [Crossref]
  26. Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  27. T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
    [Crossref] [PubMed]
  28. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  29. Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
    [Crossref] [PubMed]
  30. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006), Chap.4.
  31. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]

2018 (1)

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

2017 (3)

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Y. Liu, Y. Li, M. Li, and J. J. He, “High-sensitivity and wide-range optical sensor based on three cascaded ring resonators,” Opt. Express 25(2), 972–978 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
[Crossref] [PubMed]

2015 (4)

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
[Crossref] [PubMed]

2014 (7)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39(21), 6304–6307 (2014).
[Crossref] [PubMed]

D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (4)

2011 (2)

2007 (2)

Absil, P.

Akiyama, T.

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Assefa, S.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Bach, H.-G.

Baets, R.

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Ben Zaken, B. B.

B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
[Crossref] [PubMed]

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Bogaerts, W.

Brouckaert, J.

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Chack, D.

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Chang, L.

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Chen, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

B. B. C. Kyotoku, L. Chen, and M. Lipson, "Broad band 1 nm channel spacing silicon-on-insulator wavelength division multiplexer," in Proc. IEEE Conf. Laser Electro-Optics (2009), paper JWA41.
[Crossref]

Chen, P.

Chen, S.

Choi, J. H.

Chu, T.

Cunningham, J. E.

Da Ros, F.

Dai, D.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39(21), 6304–6307 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

De Coster, J.

De Heyn, P.

Ding, Y.

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Dumon, P.

Fainman, Y.

Fu, X.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Gan, F.

Gong, Y.

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

Gong, Z.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Green, W. M.

Grieco, A.

Guan, X.

He, J. J.

He, S.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

Horst, F.

Hu, Y.

Huang, B.

Huang, Y.-Z.

Ikeda, K.

Ishida, K.

Jeong, S.-H.

Ji, W.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Jiang, C.

Krishnamoorthy, A. V.

Kumar, V.

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Kunkel, R.

Kyotoku, B. B. C.

B. B. C. Kyotoku, L. Chen, and M. Lipson, "Broad band 1 nm channel spacing silicon-on-insulator wavelength division multiplexer," in Proc. IEEE Conf. Laser Electro-Optics (2009), paper JWA41.
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lepage, G.

Li, L.

Li, M.

Li, W.

Li, X.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[Crossref] [PubMed]

Li, Y.

Li, Z.

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[Crossref] [PubMed]

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

B. B. C. Kyotoku, L. Chen, and M. Lipson, "Broad band 1 nm channel spacing silicon-on-insulator wavelength division multiplexer," in Proc. IEEE Conf. Laser Electro-Optics (2009), paper JWA41.
[Crossref]

Liu, L.

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Lv, L.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Malka, D.

B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
[Crossref] [PubMed]

D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).

Mizrahi, A.

Morito, K.

Mulugeta, T.

Nezhad, M. P.

Offrein, B. J.

Okamoto, K.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Ou, H.

Pang, A.

Pantouvaki, M.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Poon, A. W.

Qi, M.

Raghuwanshi, S. K.

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Raj, K.

Rasras, M.

Sekiguchi, S.

Shank, S. M.

Sheng, Z.

Shi, Y.

Shubin, I.

Singh, D. P.

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Sintov, Y.

D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).

Sun, C.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Sun, X.

Tan, D. T. H.

Tanaka, S.

Tanaka, Y.

Van Campenhout, J.

Van Thourhout, D.

Verheyen, P.

Vlasov, Y. A.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, J.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

Wang, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

Wang, X.

Wu, A.

Xiao, J.

Xiao, X.

Xiong, K.

Xu, H.

Xu, J.

Yang, Y.-D.

Yao, C.

Ye, M.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Yin, R.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Yu, J.

Yu, Y.

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[Crossref] [PubMed]

Zalevsky, Z.

D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).

Zamek, S.

Zanzury, T.

B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
[Crossref] [PubMed]

Zhang, R.

Zhang, S.

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

Zhang, X.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Zheng, X.

Zhou, G.

Zou, S.

IEEE Photon. Technol. Lett. (3)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

L. Chang, Y. Gong, L. Liu, Z. Li, and Y. Yu, “Low-loss broadband silicon-on-insulator demultiplexers in the O-Band,” IEEE Photon. Technol. Lett. 29(15), 1237–1240 (2017).
[Crossref]

S. Zhang, W. Ji, R. Yin, X. Li, Z. Gong, and L. Lv, “Full bandwidth wavelength division multiplexer/ demultiplexer based on MMI,” IEEE Photon. Technol. Lett. 30(1), 107–110 (2018).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Technol. (1)

D. Malka, Z. Zalevsky, and Y. Sintov, “Design of a 1×4 silicon wavelength demultiplexer based on multimode interference in a slot waveguide structures,” J. Opt. Technol. 17(12), 1–4 (2014).

Laser Photon. Rev. (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photon. Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[Crossref]

Materials (Basel) (1)

B. B. Ben Zaken, T. Zanzury, and D. Malka, “An 8-channel wavelength MMI demultiplexer in slot waveguide structures,” Materials (Basel) 9(11), 881 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, "Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Opt. Commun. (1)

D. Chack, V. Kumar, S. K. Raghuwanshi, and D. P. Singh, “Design and analysis of O–S–C triple band wavelength division demultiplexer using cascaded MMI couplers,” Opt. Commun. 382, 324–331 (2017).
[Crossref]

Opt. Express (13)

C. Yao, H.-G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express 20(16), 18248–18253 (2012).
[Crossref] [PubMed]

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

S.-H. Jeong, S. Tanaka, T. Akiyama, S. Sekiguchi, Y. Tanaka, and K. Morito, “Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers,” Opt. Express 20(23), 26000–26011 (2012).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

D. T. H. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100GHz spacing on silicon,” Opt. Express 22(9), 10408–10415 (2014).
[Crossref] [PubMed]

J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15(13), 8300–8308 (2007).
[Crossref] [PubMed]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[Crossref] [PubMed]

Y. Liu, Y. Li, M. Li, and J. J. He, “High-sensitivity and wide-range optical sensor based on three cascaded ring resonators,” Opt. Express 25(2), 972–978 (2017).
[Crossref] [PubMed]

Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Sci. Rep. (1)

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006), Chap.4.

B. B. C. Kyotoku, L. Chen, and M. Lipson, "Broad band 1 nm channel spacing silicon-on-insulator wavelength division multiplexer," in Proc. IEEE Conf. Laser Electro-Optics (2009), paper JWA41.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Schematic structure of the proposed WDM based on conventional ADCs. (b) Top view of the wavelength λ2 channel.
Fig. 2
Fig. 2 (a) Schematic structure of S-bend waveguide. (b) The transmission of S-bend waveguide as a function of the length Lx.
Fig. 3
Fig. 3 The effective refractive indices of TE0 mode and TE1 mode vary with the waveguide width at a wavelength of 1549.2 nm.
Fig. 4
Fig. 4 (a) The coupling efficiency varies with the width W1 of the bus waveguide. (b) The coupling efficiency varies with the coupling length L1 under the optimal designed parameters.
Fig. 5
Fig. 5 (a) The effective refractive indices of TE0 mode and TE2 mode vary with the waveguide width at a wavelength of 1548.4 nm. (b) The effective refractive indices of TE0 mode and TE3 mode vary with the waveguide width at a wavelength of 1547.6 nm.
Fig. 6
Fig. 6 (a) Schematic structure of the proposed WDM based on tapered ADCs. (b) Top view of the wavelength λ2 channel.
Fig. 7
Fig. 7 The effective refractive indices of TE0 mode and TE1 mode vary with the waveguide width at a wavelength of 1549.2 nm.
Fig. 8
Fig. 8 (a) The effective refractive indices of TE0 mode and TE2 mode vary with the waveguide width at a wavelength of 1548.4 nm. (b) The effective refractive indices of TE0 mode and TE3 mode vary with the waveguide width at a wavelength of 1547.6 nm.
Fig. 9
Fig. 9 Field evolution from fundamental mode TE0 to high-order modes TE1, TE2, and TE3 at the wavelengths of (a) λ2, (b) λ3, and (c) λ4 by the conventional ADC1, ADC2, and ADC3, respectively. Those mode conversions by the tapered ADCs at the wavelengths of (d) λ2, (e) λ3, and (f) λ4。
Fig. 10
Fig. 10 The transmission of the four wavelengths multiplexed in the WDMs. (a) conventional ADCs and (b) tapered ADCs.
Fig. 11
Fig. 11 The insertion loss of each ADC varies with (a) ∆W, (b) ∆L, (c) ∆H and (d) gap, including the WDMs based on conventional ADCs and tapered ADCs.
Fig. 12
Fig. 12 SEM top view of fabricated whole device. (a) The test devices include three parts: the multiplexer, the demultiplexer, and focusing grating couplers (FGCs). The local enlargement of conventional ADCs for multiplexing the wavelengths (b) λ2, (c) λ3, (d) λ4. The local enlargement of tapered ADCs for multiplexing the wavelengths (e) λ2, (f) λ3, (g) λ4. (h) Overall image of the FGC for vertical coupling between the fiber and the input waveguide. (i) An enlarged view of the manufactured grating.
Fig. 13
Fig. 13 The schematic diagram of experimental setup.
Fig.14
Fig.14 When injecting λ1, λ2, λ3, λ4 single wavelength light sources into the four channels respectively, the measured spectral response of four wavelength channels of WDMs based on (a) the conventional ADCs and (b) the tapered ADCs.

Tables (3)

Tables Icon

Table 1 Optimal Parameters of WDM Based on Conventional ADCs

Tables Icon

Table 2 Optimal Parameters of WDM Based on Tapered ADCs

Tables Icon

Table 3 Insertion Loss and Crosstalk of the WDMs

Metrics