Abstract

We report the direct femtosecond laser inscription of a 45° tilted fiber Bragg grating (TFBG) into fluoride fiber, creating an in-fiber mid-infrared polarizer. Utilizing a 16 mm long intracavity TFBG, we demonstrate a 2.862 μm Ho3+Pr3+:ZBLAN fiber laser with 21.6 dB output polarization extinction ratio (PER), up to 0.37 W output power and 31.3% slope efficiency. In addition, we experimentally demonstrate that the laser PER is a linear function of grating length. Our results show that fluoride TFBGs are a promising route to replace bulk polarizers in mid-IR laser cavities, paving the way to all-fiber mid-infrared laser systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers

Gayathri Bharathan, Robert I. Woodward, Martin Ams, Darren D. Hudson, Stuart D. Jackson, and Alex Fuerbach
Opt. Express 25(24) 30013-30019 (2017)

Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating

Zhijia Hu, Rui Ma, Xiaojuan Zhang, Zhongyuan Sun, Xin Liu, Jun Liu, Kang Xie, and Lin Zhang
Opt. Express 27(3) 3255-3263 (2019)

Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser

Chengbo Mou, Kaiming Zhou, Lin Zhang, and Ian Bennion
J. Opt. Soc. Am. B 26(10) 1905-1911 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [Crossref]
  2. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
    [Crossref]
  3. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of > 80° tilted structures,” Opt. Lett. 31, 1193–1195 (2006).
    [Crossref] [PubMed]
  4. Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21, 28297–28303 (2013).
    [Crossref]
  5. D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
    [Crossref]
  6. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  7. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref] [PubMed]
  8. Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
    [Crossref]
  9. C. Mou, K. Zhou, L. Zhang, and I. Bennion, “Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26, 1905–1911 (2009).
    [Crossref]
  10. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38, 2388–2390 (2013).
    [Crossref] [PubMed]
  11. G. Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, and A. Fuerbach, “Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers,” Opt. Express 25, 30013–30019 (2017).
    [Crossref] [PubMed]
  12. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42, 2054–2057 (2017).
    [Crossref] [PubMed]
  13. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett. 30, 1285–1288 (2005).
    [Crossref] [PubMed]
  14. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  15. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24, 30–40 (2016).
    [Crossref] [PubMed]
  16. A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
    [Crossref]
  17. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
    [Crossref]
  18. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29, 2715–2724 (2011).
    [Crossref]
  19. M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43, 1994–1997 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

2016 (2)

2014 (2)

D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

2013 (2)

2011 (1)

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

2009 (1)

2006 (2)

2005 (1)

2004 (1)

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

2000 (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

1996 (1)

Aldén, M.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Alwahabi, Z. T.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Ams, M.

Antipov, S.

Bennion, I.

Bernier, M.

Bharathan, G.

Caucheteur, C.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Chen, X.

Choi, D.-Y.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Erdogan, T.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[Crossref]

Fortin, V.

Fuerbach, A.

Gai, X.

Heck, M.

Hudson, D. D.

Ioannou, A.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Jackson, S. D.

Kalli, K.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Li, Z. S.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Maes, F.

Magi, E.

Mou, C.

Nolte, S.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Rupinski, M.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Simpson, G.

Sipe, J.

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Theodosiou, A.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Tünnermann, A.

Turitsyn, S.

Vallée, R.

Vu, K.

Wang, R.

Westbrook, P. S.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Williams, R. J.

Withford, M. J.

Woodward, R. I.

Yan, Z.

Yang, Z.

Yu, Y.

Zetterberg, J.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Zhang, L.

Zhang, Z.

Zhou, K.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

Opt. Lett. (6)

Opti. Lett. (1)

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Inscription of TFBG into passive and active ZBLAN fibers

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the TFBG in radiation coupling mode. Phase-matching conditions of TFBG with (b) small tilt angles (c) tilt angle = 45° and (d) large tilt angles.
Fig. 2
Fig. 2 (a) Experimental setup (b) microscope image of the 45° TFBG in ZBLAN fiber and (c) laser spectrum.
Fig. 3
Fig. 3 Polarization dependent loss of 45° TFBG in passive ZBLAN fiber as a function of wavelength.
Fig. 4
Fig. 4 Direct fs laser inscription of 45° TFBG in passive and active ZBLAN fiber (see Visualization 1).
Fig. 5
Fig. 5 PER response of the laser (a) without TFBG, (b) with TFBG of 1 mm length, (c) with TFBG of 2 mm length, and (d) with TFBG of 16 mm length.
Fig. 6
Fig. 6 PER response of the laser as a function of grating length.
Fig. 7
Fig. 7 Slope efficiency of the fiber laser with and without TFBG.
Fig. 8
Fig. 8 PER stability of the laser over 3 hours using 15 mm TFBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K R = K C + K G ,
λ strongest = 2 n eff Λ G cos 45 ° m ,

Metrics