Abstract

We report the direct femtosecond laser inscription of a 45° tilted fiber Bragg grating (TFBG) into fluoride fiber, creating an in-fiber mid-infrared polarizer. Utilizing a 16 mm long intracavity TFBG, we demonstrate a 2.862 μm Ho3+Pr3+:ZBLAN fiber laser with 21.6 dB output polarization extinction ratio (PER), up to 0.37 W output power and 31.3% slope efficiency. In addition, we experimentally demonstrate that the laser PER is a linear function of grating length. Our results show that fluoride TFBGs are a promising route to replace bulk polarizers in mid-IR laser cavities, paving the way to all-fiber mid-infrared laser systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Higher-order cladding mode excitation of femtosecond-laser-inscribed tilted FBGs

Andreas Ioannou, Antreas Theodosiou, Kyriacos Kalli, and Christophe Caucheteur
Opt. Lett. 43(9) 2169-2172 (2018)

High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings

Kaiming Zhou, George Simpson, Xianfeng Chen, Lin Zhang, and Ian Bennion
Opt. Lett. 30(11) 1285-1287 (2005)

Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings

Sergei Antipov, Martin Ams, Robert J. Williams, Eric Magi, Michael J. Withford, and Alexander Fuerbach
Opt. Express 24(1) 30-40 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [Crossref]
  2. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
    [Crossref]
  3. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of > 80° tilted structures,” Opt. Lett. 31, 1193–1195 (2006).
    [Crossref] [PubMed]
  4. Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21, 28297–28303 (2013).
    [Crossref]
  5. D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
    [Crossref]
  6. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  7. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref] [PubMed]
  8. Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
    [Crossref]
  9. C. Mou, K. Zhou, L. Zhang, and I. Bennion, “Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26, 1905–1911 (2009).
    [Crossref]
  10. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38, 2388–2390 (2013).
    [Crossref] [PubMed]
  11. G. Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, and A. Fuerbach, “Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers,” Opt. Express 25, 30013–30019 (2017).
    [Crossref] [PubMed]
  12. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42, 2054–2057 (2017).
    [Crossref] [PubMed]
  13. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett. 30, 1285–1288 (2005).
    [Crossref] [PubMed]
  14. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  15. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24, 30–40 (2016).
    [Crossref] [PubMed]
  16. A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
    [Crossref]
  17. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
    [Crossref]
  18. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29, 2715–2724 (2011).
    [Crossref]
  19. M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43, 1994–1997 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

2016 (2)

2014 (2)

D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

2013 (2)

2011 (1)

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

2009 (1)

2006 (2)

2005 (1)

2004 (1)

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

2000 (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

1996 (1)

Aldén, M.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Alwahabi, Z. T.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Ams, M.

Antipov, S.

Bennion, I.

Bernier, M.

Bharathan, G.

Caucheteur, C.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Chen, X.

Choi, D.-Y.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Erdogan, T.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[Crossref]

Fortin, V.

Fuerbach, A.

Gai, X.

Heck, M.

Hudson, D. D.

Ioannou, A.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Jackson, S. D.

Kalli, K.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Li, Z. S.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Maes, F.

Magi, E.

Mou, C.

Nolte, S.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Rupinski, M.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Simpson, G.

Sipe, J.

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Theodosiou, A.

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Tünnermann, A.

Turitsyn, S.

Vallée, R.

Vu, K.

Wang, R.

Westbrook, P. S.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

Williams, R. J.

Withford, M. J.

Woodward, R. I.

Yan, Z.

Yang, Z.

Yu, Y.

Zetterberg, J.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

Zhang, L.

Zhang, Z.

Zhou, K.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy, ” Appl. Phys. B: Lasers Opt. 79, 135–138 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter Using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12, 1352–1354 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

D. D. Hudson, “Invited paper: Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol. 20, 631–641 (2014).
[Crossref]

Opt. Lett. (6)

Opti. Lett. (1)

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser,” Opti. Lett. 42, 5198–5201 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Inscription of TFBG into passive and active ZBLAN fibers

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the TFBG in radiation coupling mode. Phase-matching conditions of TFBG with (b) small tilt angles (c) tilt angle = 45° and (d) large tilt angles.
Fig. 2
Fig. 2 (a) Experimental setup (b) microscope image of the 45° TFBG in ZBLAN fiber and (c) laser spectrum.
Fig. 3
Fig. 3 Polarization dependent loss of 45° TFBG in passive ZBLAN fiber as a function of wavelength.
Fig. 4
Fig. 4 Direct fs laser inscription of 45° TFBG in passive and active ZBLAN fiber (see Visualization 1).
Fig. 5
Fig. 5 PER response of the laser (a) without TFBG, (b) with TFBG of 1 mm length, (c) with TFBG of 2 mm length, and (d) with TFBG of 16 mm length.
Fig. 6
Fig. 6 PER response of the laser as a function of grating length.
Fig. 7
Fig. 7 Slope efficiency of the fiber laser with and without TFBG.
Fig. 8
Fig. 8 PER stability of the laser over 3 hours using 15 mm TFBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K R = K C + K G ,
λ strongest = 2 n eff Λ G cos 45 ° m ,