Abstract

Quantitative phase imaging (QPI) of biological cells and tissues is an important technique useful in the determination of many biophysical parameters such as morphology, refractive index, thickness, cell dry mass, hemoglobin concentration, etc. Off-axis digital holography has been ideal for the QPI of microscopic specimens, but it has lower temporal stability compared to on-axis and common path digital holographic microscopes, which offer higher temporal stability. In this paper, we present a very simple, easy to align yet highly stable common path digital holographic microscope based on a Fresnel biprism interferometer. The system uses a biprism to divide the incoming beam into reference and object beams without the loss of optical power, unlike diffraction phase microscopy. Two methods are proposed, one by utilizing the spatial filtering mode and the other by the self-referencing mode. It offers the advantage that the reference beam can be easily created simply by translating the object in the focal plane of the microscopic objective or by spatially filtering one of the object beams in the Fourier domain. The proposed setup offers no power loss and a high phase stability of approximately 0.006 rad (6 mrad) without using any vibration isolation. The experiments on industrial and biological samples are reported demonstrating its application both for static and dynamic samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer

Chaojie Ma, Ying Li, Jiwei Zhang, Peng Li, Teli Xi, Jianglei Di, and Jianlin Zhao
Opt. Express 25(12) 13659-13667 (2017)

Highly stable digital holographic microscope using Sagnac interferometer

Swapnil Mahajan, Vismay Trivedi, Priyanka Vora, Vani Chhaniwal, Bahram Javidi, and Arun Anand
Opt. Lett. 40(16) 3743-3746 (2015)

Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance

Jiwei Zhang, Siqing Dai, Chaojie Ma, Jianglei Di, and Jianlin Zhao
Appl. Opt. 56(11) 3223-3228 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).
  2. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  3. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [Crossref] [PubMed]
  4. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
    [Crossref] [PubMed]
  5. J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
    [Crossref] [PubMed]
  6. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
    [Crossref] [PubMed]
  7. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
    [Crossref]
  8. P. Hosseini, R. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. Kuang, Z. Yaqoob, and P. T. C. So, “Pushing phase and amplitude sensitivity limits in interferometric microscopy,” Opt. Lett. 41(7), 1656–1659 (2016).
    [Crossref] [PubMed]
  9. P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
    [PubMed]
  10. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
    [Crossref] [PubMed]
  11. S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
    [Crossref] [PubMed]
  12. M. Shan, B. Hao, Z. Zhong, M. Diao, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane,” Opt. Express 21(2), 2126–2132 (2013).
    [Crossref] [PubMed]
  13. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
    [Crossref] [PubMed]
  14. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
    [Crossref]
  15. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  16. W. C. Hsu, J. W. Su, T. Y. Tseng, and K. B. Sung, “Tomographic diffractive microscopy of living cells based on a common-path configuration,” Opt. Lett. 39(7), 2210–2213 (2014).
    [Crossref] [PubMed]
  17. J. Jang, C. Y. Bae, J. K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett. 35(4), 514–516 (2010).
    [Crossref] [PubMed]
  18. A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
    [Crossref]
  19. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  20. W. Qu, K. Bhattacharya, C. O. Choo, Y. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48(15), 2778–2783 (2009).
    [Crossref] [PubMed]
  21. W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50(6), 886–890 (2011).
    [Crossref] [PubMed]
  22. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [Crossref] [PubMed]

2017 (3)

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
[Crossref] [PubMed]

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

2016 (1)

2015 (3)

2014 (5)

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

W. C. Hsu, J. W. Su, T. Y. Tseng, and K. B. Sung, “Tomographic diffractive microscopy of living cells based on a common-path configuration,” Opt. Lett. 39(7), 2210–2213 (2014).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (2)

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50(6), 886–890 (2011).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2006 (1)

Anand, A.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

Asundi, A.

Bae, C. Y.

Bai, H.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[Crossref] [PubMed]

Bhaduri, B.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Bhattacharya, K.

Bon, P.

Chee, O. C.

Chhaniwal, V.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Choi, C.

Choo, C. O.

Dasari, R. R.

Di, J.

Diao, M.

Diaspro, A.

Edwards, C.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Feld, M. S.

Gao, P.

J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
[Crossref] [PubMed]

Goddard, L. L.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Guo, L.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Appl. Opt. 54(32), 9513–9517 (2015).
[Crossref] [PubMed]

Hao, B.

Heo, J. H.

Hosseini, P.

Hsu, W. C.

Ikeda, T.

Jang, J.

Jang, S.

Javidi, B.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

Joglekar, M.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Kim, K.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

Kim, Y.

Kim, Y. H.

Kuang, C.

Lee, K.

Leitgeb, R.

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Leitgeb, R. A.

Li, P.

Li, Y.

Ma, C.

Mahajan, S.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Maucort, G.

Monneret, S.

Moradi, A. R.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

Nguyen, T. H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Park, H.

Park, J. K.

Park, Y.

Patel, N.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

Peres, C.

Pham, H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Popescu, G.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Qu, W.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Shaked, N. T.

Shan, M.

Shao, X.

J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
[Crossref] [PubMed]

Shim, H.

Singh, A.

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Singh, A. S. G.

So, P. T. C.

Su, J. W.

Sung, K. B.

Trivedi, V.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Tseng, T. Y.

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Vora, P.

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

Wattellier, B.

Xi, T.

Yaqoob, Z.

Ye, J. C.

Yoon, J.

Yu, Y.

Zhang, J.

Zhang, Y.

Zhao, J.

Zheng, J.

J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
[Crossref] [PubMed]

Zhong, Z.

Zhou, R.

P. Hosseini, R. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. Kuang, Z. Yaqoob, and P. T. C. So, “Pushing phase and amplitude sensitivity limits in interferometric microscopy,” Opt. Lett. 41(7), 1656–1659 (2016).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Adv. Opt. Photonics (1)

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Appl. Opt. (3)

J. Biomed. Opt. (2)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

P. Vora, V. Trivedi, S. Mahajan, N. Patel, M. Joglekar, V. Chhaniwal, A. R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 1–11 (2017).
[PubMed]

Opt. Express (5)

Opt. Lasers Eng. (1)

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Opt. Lett. (7)

Proc. SPIE (1)

A. Anand, V. Chhaniwal, S. Mahajan, V. Trivedi, A. Singh, R. Leitgeb, and B. Javidi, “Self-referencing digital holographic microscope for dynamic imaging of living cells,” Proc. SPIE 9117, 91170X (2014).
[Crossref]

Sci. Rep. (1)

J. Zheng, P. Gao, and X. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7(1), 4255 (2017).
[Crossref] [PubMed]

SPIE Reviews (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of proposed common path DHM using Fresnel biprism. OBJ is objective lens and L1, L2 and L3 are lenses of focal length 100mm, 100mm and 175mm.
Fig. 2
Fig. 2 (a) Hologram recorded having overlapping problem and (b) reconstructed amplitude.
Fig. 3
Fig. 3 Overcoming the overlapping problem using (a) spatial filtering (inset 1) and (b) translating the sample (inset 2).
Fig. 4
Fig. 4 (a) Hologram recorded of USAF 1951 resolution chart with spatial filtering and (b) reconstructed amplitude.
Fig. 5
Fig. 5 (a) Hologram recorded of RBC sample with spatial filtering. (b) Zoomed in image of hologram and (c) reconstructed phase map.
Fig. 6
Fig. 6 Temporal stability of proposed setup. (a) Histogram of the standard deviation of phase difference of proposed setup with a mean variation of 0.006 rad. (b) Histogram of the standard deviation of phase difference of Mach-Zehnder setup with a mean variation of 0.2 rad.
Fig. 7
Fig. 7 Evaporation of acetone (CH3)2CO with time. 3D height profile of acetone at time instants 0.24s, 1.52s, 2s, 2.48s, 2.56s, and 3.12s. Color bar represents height in micrometers.
Fig. 8
Fig. 8 (a) Hologram recorded of USAF 1951 resolution chart by translating the sample and (b) reconstructed amplitude.
Fig. 9
Fig. 9 (a) Hologram recorded of RBC sample by translating the sample. (b) Zoomed in image of hologram (c) reconstructed phase image of red square in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2π( n c n r )t/λ

Metrics