Abstract

Integral microscopy is a novel technique that allows the simultaneous capture of multiple perspective images of microscopic samples. This feature is achieved at the cost of a significant reduction of the spatial resolution. In fact, it is assumed that in the best cases the resolution is reduced by a factor that is not smaller than ten, what poses a hard drawback to the utility of the technique. However, to the best of our knowledge, this resolution limitation has never been researched rigorously. For this reason, the aim of this paper is to explore the real limitations in resolution of integral microscopy and to obtain optically, without the need of any image-processing algorithm, perspective images with the best resolution ever achieved in integral microscopy. This result opens a wide range of new possibilities of using integral microscopy in any imaging application were micron resolution is required.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resolution enhancement in integral microscopy by physical interpolation

Anabel Llavador, Emilio Sánchez-Ortiga, Juan Carlos Barreiro, Genaro Saavedra, and Manuel Martínez-Corral
Biomed. Opt. Express 6(8) 2854-2863 (2015)

Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems

Manuel Martínez-Corral and Bahram Javidi
Adv. Opt. Photon. 10(3) 512-566 (2018)

Resolution improvements in integral microscopy with Fourier plane recording

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral
Opt. Express 24(18) 20792-20798 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  2. M. Levoy, “Light field in computational imaging,” Computer 39(8), 46–55 (2006).
    [Crossref]
  3. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. Landy and J. A. Movshon, eds. (MIT Press, 1991) pp. 3–20.
  4. T. E. Bishop and P. Favaro, “Full-resolution depth map estimation from an aliased plenoptic light field”, in Asian Conference on Computer Vision, 186–200 (2010).
  5. X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
    [Crossref]
  6. L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
    [Crossref] [PubMed]
  7. N. Bedard, T. Shope, A. Hoberman, M. A. Haralam, N. Shaikh, J. Kovačević, N. Balram, and I. Tošić, “Light field otoscope design for 3D in vivo imaging of the middle ear,” Biomed. Opt. Express 8(1), 260–272 (2017).
    [Crossref] [PubMed]
  8. H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Optics in the Life Sciences Congress, OSA Technical Digest (2017), paper BoW3A.6.
    [Crossref]
  9. A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H. P. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
    [Crossref] [PubMed]
  10. A. Klein, T. Yaron, E. Preter, H. Duadi, and M. Fridman, “Temporal depth imaging,” Optica 4(5), 502–506 (2017).
    [Crossref]
  11. T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
    [Crossref] [PubMed]
  12. J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  13. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  14. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  15. A. Llavador, E. Sánchez-Ortiga, J. C. Barreiro, G. Saavedra, and M. Martínez-Corral, “Resolution enhancement in integral microscopy by physical interpolation,” Biomed. Opt. Express 6(8), 2854–2863 (2015).
    [Crossref] [PubMed]
  16. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” IEEE International Conference on Computational Photography, art. 5559008 (2009).
    [Crossref]
  17. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
    [Crossref] [PubMed]
  18. P. Y. Hsieh, P. Y. Chou, H. A. Lin, C. Y. Chu, C. T. Huang, C. H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y. P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
    [Crossref] [PubMed]
  19. A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
    [Crossref] [PubMed]
  20. G. Scrofani, J. Sola-Pikabea, A. Llavador, E. Sanchez-Ortiga, J. C. Barreiro, G. Saavedra, J. Garcia-Sucerquia, and M. Martínez-Corral, “FIMic: design for ultimate 3D-integral microscopy of in-vivo biological samples,” Biomed. Opt. Express 9(1), 335–346 (2018).
    [Crossref] [PubMed]
  21. M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
    [Crossref]
  22. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  23. M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Disp. Technol. 5(2), 61–65 (2009).
    [Crossref]
  24. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref] [PubMed]
  25. N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
    [Crossref] [PubMed]

2018 (3)

2017 (4)

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

N. Bedard, T. Shope, A. Hoberman, M. A. Haralam, N. Shaikh, J. Kovačević, N. Balram, and I. Tošić, “Light field otoscope design for 3D in vivo imaging of the middle ear,” Biomed. Opt. Express 8(1), 260–272 (2017).
[Crossref] [PubMed]

A. Klein, T. Yaron, E. Preter, H. Duadi, and M. Fridman, “Temporal depth imaging,” Optica 4(5), 502–506 (2017).
[Crossref]

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (1)

2013 (1)

2012 (2)

X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
[Crossref]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
[Crossref] [PubMed]

2009 (2)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Disp. Technol. 5(2), 61–65 (2009).
[Crossref]

2006 (2)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

M. Levoy, “Light field in computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

2004 (2)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Andalman, A.

Bai, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Balram, N.

Barreiro, J. C.

Bedard, N.

Bishop, T. E.

T. E. Bishop and P. Favaro, “Full-resolution depth map estimation from an aliased plenoptic light field”, in Asian Conference on Computer Vision, 186–200 (2010).

Broxton, M.

Chai, Y.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Chen, C. H.

Cho, M.

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Disp. Technol. 5(2), 61–65 (2009).
[Crossref]

Chou, P. Y.

Chu, C. Y.

Cohen, N.

Cong, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Corral, M. M.

Daneshpanah, M.

X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
[Crossref]

Deisseroth, K.

Du, J.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Duadi, H.

Favaro, P.

T. E. Bishop and P. Favaro, “Full-resolution depth map estimation from an aliased plenoptic light field”, in Asian Conference on Computer Vision, 186–200 (2010).

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Fridman, M.

Garcia-Sucerquia, J.

Grosenick, L.

Hang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Haralam, M. A.

Hassanfiroozi, A.

Hoberman, A.

Hong, S.-H.

Horowitz, M.

Hsieh, P. Y.

Huang, C. T.

Huang, Y. P.

Jang, J. S.

Jang, J.-S.

Javidi, B.

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

P. Y. Hsieh, P. Y. Chou, H. A. Lin, C. Y. Chu, C. T. Huang, C. H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y. P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref] [PubMed]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H. P. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
[Crossref]

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Disp. Technol. 5(2), 61–65 (2009).
[Crossref]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
[Crossref] [PubMed]

Kim, N.

Klein, A.

Kovacevic, J.

Kwon, K.-C.

Levoy, M.

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref] [PubMed]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

M. Levoy, “Light field in computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

Lim, Y.-T.

Lin, H. A.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Llavador, A.

Martínez-Corral, M.

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Molodtsov, M. I.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Nöbauer, T.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Park, J.-H.

Pernía-Andrade, A. J.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Preter, E.

Qin, Z.

Saavedra, G.

Sanchez-Ortiga, E.

Sánchez-Ortiga, E.

Scrofani, G.

Shaikh, N.

Shang, C.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Shieh, H. P.

Shope, T.

Skocek, O.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Sola-Pikabea, J.

Tošic, I.

Traub, F. M.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Vaziri, A.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Wang, K.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Wang, Z.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Weilguny, L.

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Wen, Q.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Xiao, X.

X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
[Crossref]

Yang, S.

Yang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Yaron, T.

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Adv. Opt. Photonics (1)

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Biomed. Opt. Express (3)

Computer (1)

M. Levoy, “Light field in computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

eLife (1)

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

J. Disp. Technol. (2)

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Disp. Technol. 5(2), 61–65 (2009).
[Crossref]

X. Xiao, M. Daneshpanah, and B. Javidi, “Occlusion removal using depth mapping in three-dimensional integral imaging,” J. Disp. Technol. 8(8), 483–490 (2012).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Nat. Methods (1)

T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, and A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).
[Crossref] [PubMed]

Opt. Express (7)

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
[Crossref] [PubMed]

P. Y. Hsieh, P. Y. Chou, H. A. Lin, C. Y. Chu, C. T. Huang, C. H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y. P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref] [PubMed]

A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H. P. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref] [PubMed]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Other (4)

H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Optics in the Life Sciences Congress, OSA Technical Digest (2017), paper BoW3A.6.
[Crossref]

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. Landy and J. A. Movshon, eds. (MIT Press, 1991) pp. 3–20.

T. E. Bishop and P. Favaro, “Full-resolution depth map estimation from an aliased plenoptic light field”, in Asian Conference on Computer Vision, 186–200 (2010).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” IEEE International Conference on Computational Photography, art. 5559008 (2009).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       Perspective views for eta=0.50
» Visualization 2       Depth reconstruction for eta=0.50
» Visualization 3       Perspective views for eta=0.25
» Visualization 4       Depth reconstruction for eta=0.25

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of an IMic.
Fig. 2
Fig. 2 Scheme of the experimental setup for determining the validity of resolution and DoF formulae.
Fig. 3
Fig. 3 Results of the experiment for η = 0.25. (a) Microimages recorded by the camera sensor; (b) View images computed from the microimages; (c) and (d) show intensity profiles along resolved (Element 7.6) and non-resolved (Element 8.1) elements, respectively, of the central view image.
Fig. 4
Fig. 4 Practical IMic operating at η = 0.50. (a) Central view image of USAF target, together with intensity profile (Element 8.6, corresponding to ρView = 2.2 μm, is resolved); (b) Microimages of the cotton sample; (c) Calculated view images; and (d) Central view image.

Tables (1)

Tables Icon

Table 1 Summary of Results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

NA'= NA M =N A ML ,
ρ View =max{ 2 p M , ρ hst },
ρ hst = λ 0 2N A MO ,
η= ρ ' hst p ,
ρ View =2 ρ hst max{ η 1 ,0.5 }.
DoF View = 4( 1+ η 2 /2 ) 5 DoF hst ,
DoF hst = 5 4 λ 0 N A 2 .
M eff =M f 1 f 2 f TL 200 ,

Metrics