Abstract

High complexity, dense integrated nanophotonic circuits possessing strong non-linearities are desirable for a breadth of applications in classical and quantum optics. In this work, we study phase matching via modal engineering in lithium niobate (LN) waveguides and microring resonators on chip for second harmonic generation (SHG). By carefully engineering the geometry dispersion, we observe a 26% W−1 cm−2 normalized efficiency for SHG in a waveguide with submicron transverse mode confinement. With similar cross-sectional dimensions, we demonstrate a phase matched microring resonator with 10 times enhancement on SHG. Our platform is capable of harnessing the strongest optical nonlinear and electro-optic effects in LN on chip with unrestricted planar circuit layouts. It offers opportunities for dense and scalable integration of efficient photonic devices with low loss and high nonlinearity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated high quality factor lithium niobate microdisk resonators

Cheng Wang, Michael J. Burek, Zin Lin, Haig A. Atikian, Vivek Venkataraman, I-Chun Huang, Peter Stark, and Marko Lončar
Opt. Express 22(25) 30924-30933 (2014)

Second harmonic generation in nano-structured thin-film lithium niobate waveguides

Cheng Wang, Xiao Xiong, Nicolas Andrade, Vivek Venkataraman, Xi-Feng Ren, Guang-Can Guo, and Marko Lončar
Opt. Express 25(6) 6963-6973 (2017)

Nanophotonic lithium niobate electro-optic modulators

Cheng Wang, Mian Zhang, Brian Stern, Michal Lipson, and Marko Lončar
Opt. Express 26(2) 1547-1555 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [Crossref]
  2. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
    [Crossref]
  3. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21, 13986–13991 (2013).
    [Crossref] [PubMed]
  4. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
    [Crossref]
  5. D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
    [Crossref]
  6. G. B. Montanari, P. D. Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20, 4444–4453 (2012).
    [Crossref] [PubMed]
  7. L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23, 1240–1248 (2015).
    [Crossref] [PubMed]
  8. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
    [Crossref] [PubMed]
  9. A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
    [Crossref]
  10. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref] [PubMed]
  11. W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Reports 6, 36920 (2016).
    [Crossref]
  12. J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
    [Crossref]
  13. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
    [Crossref]
  14. A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
    [Crossref]
  15. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  16. G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  17. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
    [Crossref]
  18. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/w conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]
  19. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
    [Crossref]
  20. M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
    [Crossref]
  21. F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
    [Crossref]
  22. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  23. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
    [Crossref] [PubMed]
  24. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
    [Crossref]
  25. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
    [Crossref]
  26. N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
    [Crossref] [PubMed]
  27. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref] [PubMed]
  28. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.
  29. J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.
  30. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/v hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
    [Crossref] [PubMed]
  31. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  32. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
    [Crossref] [PubMed]
  33. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
    [Crossref]
  34. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
    [Crossref] [PubMed]
  35. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).
  36. A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
    [Crossref]
  37. H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009).
    [Crossref]
  38. F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
    [Crossref]
  39. R. W. Boyd, “Wave-equation description of nonlinear optical interactions,” in Nonlinear Optics, 3rd ed., R. W. Boyd, ed. (Academic Press, 2008), chap. 2, pp. 69–133.
  40. E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
    [Crossref]
  41. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
    [Crossref]
  42. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]

2018 (5)

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

2017 (6)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

2016 (7)

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Reports 6, 36920 (2016).
[Crossref]

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
[Crossref] [PubMed]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/w conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

2015 (4)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23, 1240–1248 (2015).
[Crossref] [PubMed]

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

2014 (2)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

2010 (2)

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

2009 (1)

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009).
[Crossref]

2006 (1)

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

2005 (1)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

2004 (1)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

1990 (1)

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

1970 (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Abel, S.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Adams, R. W.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Andrade, N.

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Baida, F.

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bajoni, D.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Belkin, M. A.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Bellanca, G.

Bentini, G. G.

Bernal, M.-P.

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Betzler, K.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

Bianconi, M.

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Blais, A.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

Bowers, J. E.

Boyd, G. D.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Boyd, R. W.

R. W. Boyd, “Wave-equation description of nonlinear optical interactions,” in Nonlinear Optics, 3rd ed., R. W. Boyd, ed. (Academic Press, 2008), chap. 2, pp. 69–133.

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
[Crossref]

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Bridenbaugh, P. M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Brousse, D.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Cai, L.

Caimi, D.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Camacho, R.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Carmon, T.

Caspani, L.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Charles, W. O.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Chen, J. X.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Chen, J.-Y.

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

Chen, L.

Cheng, L. W.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Cheng, R.

Chiarini, M.

Choa, F.-S.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

D’Auria, V.

Desiatov, B.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Douglas, J. K.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Eggleton, B. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Eichenfield, M.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Eltes, F.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Fallegger, F.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Fedrici, B.

Fejer, M. M.

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21, 13986–13991 (2013).
[Crossref] [PubMed]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Fompeyrine, J.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Frank, I. W.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Friedmann, T. A.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Galli, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Geiss, R.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Gmachl, C.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Grange, R.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Guo, G.-C.

Guo, X.

Han, S. L. H.

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Hermann, H.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Hu, H.

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23, 1240–1248 (2015).
[Crossref] [PubMed]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Huang, Y.-P.

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

Ishikawa, H.

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009).
[Crossref]

Jang, M.

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

Jankowski, M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Jiang, W. C.

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Reports 6, 36920 (2016).
[Crossref]

Kaiser, F.

Kalhor, N.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Kang, J.-H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Kip, D.

Kondo, T.

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009).
[Crossref]

Krasnokutska, I.

Kumar, P.

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
[Crossref]

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Langrock, C.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Li, M.

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

Li, X.

Li, Y.

Lim, E. J.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Lin, Q.

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Reports 6, 36920 (2016).
[Crossref]

Lipson, M.

Liscidini, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Loncar, M.

Marandi, A.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Matsumoto, S.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Mendes, U. C.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Menin, A.

Milenin, A. P.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

Montanari, G. B.

Moore, J.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

Morandotti, R.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Moss, D. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Nash, F. R.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Ndao, A.

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Nicola, P. D.

Nubile, A.

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

O’Connor, E.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Offrein, B.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Pan, J.-W.

Parini, A.

Pelc, J. S.

Pertsch, T.

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Peruzzo, A.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Peters, J.

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Qiu, C.-X.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Raymer, M. G.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Reano, R. M.

Reddy, D. V.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Ren, X.-F.

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Rossell, M. D.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Rüter, C. E.

Samkharadze, N.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Sammak, A.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

Sargent, M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Scappucci, G.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

Schrempel, F.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Sergeyev, A.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Setzpfandt, F.

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

Shahverdi, A.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

Shams-Ansari, A.

Shentu, G.-L.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Silberhorn, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Sohler, W.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Solntsev, A. S.

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
[Crossref]

Sousa, M.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

Stern, B.

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Sua, Y. M.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

Sugliani, S.

Sukhorukov, A. A.

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

Sun, Q.-C.

Suntsov, S.

Tambasco, J.-L. J.

Tang, H. X.

Tanzilli, S.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Tumeh, L.

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

Ulliac, G.

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Vahala, K. J.

Vandersypen, L. M. K.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Venkataraman, V.

Volet, N.

Volk, M. F.

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

Wang, C.

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Wang, L.

Wang, X.-D.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Wehrspohn, R. B.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Willner, A. E.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Wong, W.-H.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

Wood, M. G.

Wu, X.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Xiong, C.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Xiong, X.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yang, L.

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Yu, D.-Y.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

Yue-Bun Pun, E.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

Zavatta, A.

Zhang, D.-L.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

Zhang, Q.

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21, 13986–13991 (2013).
[Crossref] [PubMed]

Zhao, Z.-T.

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

Zheng, G.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Zheng, M.-Y.

Zou, C.-L.

ACS Photonics (3)

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2, 687–691 (2015).
[Crossref]

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J.-H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in gaas photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1, 516–523 (2014).
[Crossref]

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics,” ACS Photonics 3, 1698–1703 (2016).
[Crossref]

APL Photonics (1)

A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, and F. Setzpfandt, “LiNbO3 waveguides for integrated SPDC spectroscopy,” APL Photonics 3, 021301 (2018).
[Crossref]

Appl. Phys. Express (1)

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2, 042202 (2009).
[Crossref]

Appl. Phys. Lett. (3)

M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, and M. A. Belkin, “Room-temperature operation of 3.6 µ m In 0.53 Ga 0.47 As/Al0.48 In 0.52 As quantum cascade laser sources based on intracavity second harmonic generation,” Appl. Phys. Lett. 97, 141103 (2010).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

J. Appl. Phys. (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

J. Vac. Sci. Technol. A (1)

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A 24, 1012–1015 (2006).
[Crossref]

Laser Photon. Rev (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev.  12, 1700256 (2018).
[Crossref]

Light. Sci. Appl. (1)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light. Sci. Appl. 6, e17100 (2017).
[Crossref]

Nat. Commun (2)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun.  8, 14288 (2017).
[Crossref] [PubMed]

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.  5, 3109 (2014).
[Crossref]

Opt. Express (9)

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref] [PubMed]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

G. B. Montanari, P. D. Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express 20, 4444–4453 (2012).
[Crossref] [PubMed]

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23, 1240–1248 (2015).
[Crossref] [PubMed]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
[Crossref] [PubMed]

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21, 13986–13991 (2013).
[Crossref] [PubMed]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/v hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21, 27003–27010 (2013).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Opt. Mater. (1)

G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Optica (4)

Phys. Rev. B (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

Phys. Rev. Lett. (2)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015).

Sci. Reports (4)

A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum parametric mode sorting: Beating the time-frequency filtering,” Sci. Reports 7, 6495 (2017).
[Crossref]

D.-L. Zhang, Q. Zhang, C.-X. Qiu, W.-H. Wong, D.-Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Reports 5, 10018 (2015).
[Crossref]

W. C. Jiang and Q. Lin, “Chip-scale cavity optomechanics in lithium niobate,” Sci. Reports 6, 36920 (2016).
[Crossref]

J.-Y. Chen, Y. M. Sua, Z.-T. Zhao, M. Li, and Y.-P. Huang, “Observation of quantum zeno blockade on chip,” Sci. Reports 7, 14831 (2017).
[Crossref]

Science (1)

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, “Strong spin-photon coupling in silicon,” Science 359, 1123–1127 (2018).
[Crossref] [PubMed]

Other (3)

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Second-harmonic generation in nanophotonic ppln waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. JTh5A.2.

J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. Camacho, and M. Eichenfield, “Efficient second harmonic generation in lithium niobate on insulator,” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STh3P.1.

R. W. Boyd, “Wave-equation description of nonlinear optical interactions,” in Nonlinear Optics, 3rd ed., R. W. Boyd, ed. (Academic Press, 2008), chap. 2, pp. 69–133.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Phase matching curve of nanophotonic LN waveguide. Inset are the mode profiles and waveguide schematic. SEM images of a microring resonator (b), waveguides (c).
Fig. 2
Fig. 2 Schematic of second harmonic generation in a waveguide and microring resonator. The inset in the left corner represents mode overlapping between 1550-nm TM0 and 775-nm TM2 modes. The inset in the right corner is the energy scheme of nonlinear frequency conversion process, which is SHG when ω1 = ω2.
Fig. 3
Fig. 3 (a) Phase matching curve in IR band for the waveguide with L = 1 mm, top width = 594 nm and sidewall = 70°. (b) Sum frequency generation on the same waveguide. The pump and signal wavelength for SFG are around 1562 nm and 1534 nm.
Fig. 4
Fig. 4 (a) Transmission spectra of quasi-TE and quasi-TM cavity modes. (b) Temperature dependency of perfect phase matching for different resonances. Square, Diamond, Triangle markers represent resonances around 1544 nm, 1537 nm and 1565 nm, respectively.
Fig. 5
Fig. 5 Comparison of second harmonic generation between a straight waveguide and a microring resonator of similar cross-section geometry. Inset: The microring illuminated by the bright SH light generated inside with few-milliwatts input pump power.
Fig. 6
Fig. 6 Experimental setup with two synchronized optical channels. Channel 1 creates a pump pulse train with 10 MHz repetition rate and 130 ps FWHM. Channel 2 produces a quasi-CW signal with 10-MHz repetition rate and 10-ns FWHM. TLS, multichannel narrow linewidth (<100 KHz) tunable laser system, PS, electrical pulse generation system, EOM, electro-optic modulator, FPC, fiber polarization controller, AWG, arbitrary waveform generator, DWDM, dense wavelength-division multiplexer, TOD, tunable optical delay, OTF, optical tunable filter, DUT, device under test.
Fig. 7
Fig. 7 Measured and simulated phase matching curve in telecom band for L = 1 mm LN waveguide. Dimension of the fabricated waveguide is 400 nm thickness, 594 nm top width and 70° sidewall angle, working temperature 28.5 °C.
Fig. 8
Fig. 8 (a) Simulated temperature dependency of phase matching central wavelength. Solid and dash line represent 1550-nm TM0 and 775-nm TM2, respectively. Black, red, green, blue and cyan colors represent different temperatures from 24.5 °C to 64.5 °C with 10 °C step. (b) Measured phase matching curve at different temperatures. Here the individual peaks are due to the max-hold function on optical spectrum analyzer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η n o r m = 8 π 2 ϵ 0 c λ 2 ω 2 d 33 2 n e f f 2 ω ( n e f f ω ) 2 E 2 ω * E ω 2 d y d z | E 2 ω | 2 d y d z | E ω | 2 d y d z s i n c 2 ( Δ K L / 2 ) ,