Abstract

Mid-infrared evanescent field directional couplers operating at ~8 µm are demonstrated by ultrafast laser inscription of waveguides in Ge33As12Se55 (IG2) chalcogenide glass. Through-port coupling ratios from > 99:1 to < 1:99 were observed, and comparison of the measured devices to analytic and numeric models verifies device performance against theory. Insertion loss of the couplers is estimated to be 0.9 dB, in addition to approximately 1 dB/cm propagation loss. These couplers are developed to enable more complex mid-infrared, and particularly the long wave infrared, ultrafast laser-inscribed photonics components, such as integrated Mach-Zehnder interferometers and photonic lanterns, to be realized in future.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
Opt. Express 26(8) 10930-10943 (2018)

Femtosecond direct-written integrated mode couplers

Nicolas Riesen, Simon Gross, John D. Love, and Michael J. Withford
Opt. Express 22(24) 29855-29861 (2014)

Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns

G. Douglass, F. Dreisow, S. Gross, and M. J. Withford
Opt. Express 26(2) 1497-1505 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [Crossref]
  2. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
    [Crossref]
  3. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [Crossref] [PubMed]
  4. J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
    [Crossref]
  5. V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 8200612 (2017).
    [Crossref]
  6. H. K. Hsiao, K. A. Winick, J. D. Monnier, and J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 microm,” Opt. Express 17(21), 18489–18500 (2009).
    [Crossref] [PubMed]
  7. I. S. Glass, Handbook of Infrared Astronomy (Cambridge University, 1999).
  8. R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).
    [Crossref]
  9. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [Crossref] [PubMed]
  10. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  11. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
    [Crossref] [PubMed]
  12. “Vitron IG2 datasheet,” http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php .
  13. H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
    [Crossref] [PubMed]
  14. M. N. Polyanskiy, “Optical constants of Vitron IG2,” https://refractiveindex.info/?shelf=glass&book=VITRON-IG&page=IG2 .
  15. A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39(16), 4820–4822 (2014).
    [Crossref] [PubMed]
  16. H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).
  17. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2006).

2018 (2)

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
[Crossref] [PubMed]

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

2017 (1)

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 8200612 (2017).
[Crossref]

2014 (1)

2012 (2)

2011 (1)

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

2009 (1)

2008 (2)

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Allen, P. J.

Allington-Smith, J.

Anheier, N. C.

Arezki, B.

Arriola, A.

Berger, J.-P.

Birks, T. A.

Bland-Hawthorn, J.

Brown, G.

Butcher, H. L.

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
[Crossref] [PubMed]

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

Choudhury, D.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

Fromherz, T.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

Harris, R. J.

Hô, N.

Hsiao, H. K.

Jakoby, B.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 8200612 (2017).
[Crossref]

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

Jha, A.

Jose, G.

Kar, A.

Kasberger, J.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Kern, P.

Krishnaswami, K.

Labadie, L.

Lavchiev, V. M.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 8200612 (2017).
[Crossref]

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

Lee, D.

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
[Crossref] [PubMed]

MacLachlan, D. G.

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
[Crossref] [PubMed]

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

Martin, G.

Monnier, J. D.

Mukherjee, S.

Myers, T. L.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Phillips, M. C.

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Psaila, N.

Qiao, H.

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Riley, B. J.

Ródenas, A.

Saeed, A.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

Soref, R.

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).
[Crossref]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Thomson, R.

Thomson, R. R.

Weidmann, D.

H. L. Butcher, D. G. MacLachlan, D. Lee, R. R. Thomson, and D. Weidmann, “Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2,” Opt. Express 26(8), 10930–10943 (2018).
[Crossref] [PubMed]

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

Winick, K. A.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 8200612 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Silica-on-silicon optical sensor based on integrated waveguides and microchannels,” IEEE Photon. Technol. Lett. 17(2), 441–443 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (2)

H. L. Butcher, D. Lee, D. Weidmann, D. G. MacLachlan, and R. R. Thomson, “Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications,” Proc. SPIE 10535, 1053514 (2018).

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).
[Crossref]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56(2), 129–135 (2011).
[Crossref]

Other (4)

“Vitron IG2 datasheet,” http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php .

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2006).

M. N. Polyanskiy, “Optical constants of Vitron IG2,” https://refractiveindex.info/?shelf=glass&book=VITRON-IG&page=IG2 .

I. S. Glass, Handbook of Infrared Astronomy (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of fabricated couplers (not to scale). Light input at port P1 was measured at output ports P3 and P4. Bend length LB and bend width A were kept constant. Interaction length LI was varied, and the lengths of the straight input arms at either end of the waveguide changed to compensate. The mid-point of LI was kept in the center of the waveguide chip. Waveguide separation d was kept constant.
Fig. 2
Fig. 2 Microscope images of fabricated couplers. (a) Facet image, showing two coupled waveguide ports. (b) Top image of coupler, showing bend (left) into interaction region (right).
Fig. 3
Fig. 3 Schematic of characterization setup. The laser output is incident on beam-steering mirrors M1–M4, and lenses L1 and L2 ensure the beam incident on MSC1 has 1.5 mm beam waist radius. MSC1 couples the resulting beam into the waveguide, and MSC2 is used to collect the output image onto a camera or power meter at position ‘A’. Position ‘B’ is the position of the power meter for throughput power observation.
Fig. 4
Fig. 4 Normalized output profiles from the evanescent field couplers, with interaction lengths: (a) 1.4 mm; (b) 1.8 mm; (c) 2.0 mm; (d) 2.2 mm; and (e) 2.4 mm. Length scales are normalized via the magnification of the characterization setup such that image dimensions are scaled to the chip facet dimensions.
Fig. 5
Fig. 5 Through-port coupling ratio (blue points) for changing LI, for d = 19.8 μm center-to-center waveguide separation. The analytic model (green lines) and numeric model (red lines) are also shown, alongside the sine-squared fit to the measured data (black line).
Fig. 6
Fig. 6 Field intensity modelled by FIMMPROP in the IG2 coupler under the condition of LI = 2.117 mm, for 50:50 coupling.

Tables (2)

Tables Icon

Table 1 ULI Parameters for Evanescent Field Couplers

Tables Icon

Table 2 Comparison of Measured and Modelled Couplers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x(z)=A sin 2 ( 2πz 4 L B ).
Pt(z)=1 sin 2 ( κ L I +ϕ ).
κ= 2Δ a ( k x a) 2 ( γ x a) 2 (1 γ x a) ν 3 exp[ γ x (d2a)].