Abstract

Traditional broadband metamaterial absorbers are typically based on the combining effects of several fundamental mode responses resulted from different dimensions of metallic elements. We report here that simple single-sized cross-shaped resonator (placed on an insulator dielectric slab and an opaque metallic mirror) having the modes of fundamental response and surface lattice resonance can be used to achieve the broadband absorption performance. A continuous bandwidth of 1.97 THz with absorptivity bigger than 50% is realized at central frequency of 2.72 THz. The device relative absorption bandwidth (RAB) can be up to 72.43%, which is superior to traditional broadband absorption devices with multiple different-sized resonators (i.e., the complex structure designs). The device RAB can be further broadened by varying the frequencies of the fundamental mode response or surface lattice resonance using different geometrical parameters. In addition, the device performance can be tuned from broadband absorption to dual-band absorption with the decrease of the dielectric slat thickness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz metamaterial absorber based on Dirac semimetal films

Tongling Wang, Maoyong Cao, Huiyun Zhang, and Yuping Zhang
Appl. Opt. 57(32) 9555-9561 (2018)

Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers

Nan Zhang, Peiheng Zhou, Dengmu Cheng, Xiaolong Weng, Jianliang Xie, and Longjiang Deng
Opt. Lett. 38(7) 1125-1127 (2013)

Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene

Chen Yang, Yi Luo, Jiaxin Guo, Yang Pu, De He, Yadong Jiang, Jimmy Xu, and Zhijun Liu
Opt. Express 24(15) 16913-16922 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700107 (2017).
    [Crossref]
  3. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  4. K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
    [Crossref]
  5. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
    [Crossref]
  6. E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
    [Crossref]
  7. N. T. Trung, D. Lee, H. K. Sung, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors,” Appl. Opt. 55(29), 8301–8307 (2016).
    [Crossref] [PubMed]
  8. K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
    [Crossref]
  9. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref] [PubMed]
  10. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  11. J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
    [Crossref]
  12. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
    [Crossref]
  13. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  14. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
    [Crossref] [PubMed]
  15. X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
    [Crossref]
  16. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  17. K. Üstün and G. Turhan-Sayan, “Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band,” J. Opt. Soc. Am. B 34(7), D86–D94 (2017).
    [Crossref]
  18. D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
    [Crossref]
  19. B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
    [Crossref]
  20. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  21. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  22. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
    [Crossref]
  23. P. Liu and T. Lan, “Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures,” Appl. Opt. 56(14), 4201–4205 (2017).
    [Crossref] [PubMed]
  24. X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
    [Crossref]
  25. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
    [Crossref]
  26. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  27. Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
    [Crossref] [PubMed]
  28. J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
    [Crossref] [PubMed]
  29. D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
    [Crossref]
  30. N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
    [Crossref]
  31. Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
    [Crossref]
  32. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  33. Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
    [Crossref] [PubMed]
  34. P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
    [Crossref]
  35. Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
    [Crossref]
  36. A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6), A997–A1006 (2013).
    [Crossref] [PubMed]
  37. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  38. G. Dayal and S. Anantha Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
    [Crossref]
  39. G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D 48(3), 035105 (2015).
    [Crossref]
  40. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  41. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  42. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  43. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref] [PubMed]
  44. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  45. G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
    [Crossref]
  46. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
    [Crossref] [PubMed]
  47. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075404 (2014).
    [Crossref]
  48. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [Crossref] [PubMed]
  49. M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
    [Crossref] [PubMed]
  50. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  51. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  52. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]

2017 (7)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700107 (2017).
[Crossref]

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

K. Üstün and G. Turhan-Sayan, “Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band,” J. Opt. Soc. Am. B 34(7), D86–D94 (2017).
[Crossref]

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

P. Liu and T. Lan, “Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures,” Appl. Opt. 56(14), 4201–4205 (2017).
[Crossref] [PubMed]

J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
[Crossref] [PubMed]

2016 (8)

D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
[Crossref]

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

N. T. Trung, D. Lee, H. K. Sung, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors,” Appl. Opt. 55(29), 8301–8307 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref] [PubMed]

2015 (12)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D 48(3), 035105 (2015).
[Crossref]

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

2014 (8)

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075404 (2014).
[Crossref]

G. Dayal and S. Anantha Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
[Crossref] [PubMed]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

2013 (4)

2012 (4)

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2010 (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2009 (2)

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Anantha Ramakrishna, S.

G. Dayal and S. Anantha Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

Aono, M.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Aslan, E.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Barnes, W. L.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075404 (2014).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. T.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Chen, L.

Chen, L. Y.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Cheong, H.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Dalvit, D. A. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Dao, T. D.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D 48(3), 035105 (2015).
[Crossref]

G. Dayal and S. Anantha Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

de Lustrac, A.

Deng, L.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Ding, W.

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Dong, G.

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

Fan, J.

Feng, R.

Gan, Q.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Gomez Rivas, J.

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
[Crossref]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Gu, Y.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Guo, W.

Hakala, T. K.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Han, T.

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

He, X.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Hien, N. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Hu, C.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Humphrey, A. D.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075404 (2014).
[Crossref]

Huttunen, M. J.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Hwang, J. S.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Ishii, S.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Jang, W. H.

Ji, D.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Jia, P.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jiang, J.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jiang, S.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Julku, A.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Kataja, M.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Kaya, S.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Kim, K. W.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Kim, Y. H.

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Kim, Y. J.

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Korkmaz, S.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Kort-Kamp, W. J. M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lai, S.

Lam, V. D.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lan, T.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Le, L. N.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Lee, D.

Lee, Y.

Lee, Y. P.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Lim, S.

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, K.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Liu, L.

Liu, P.

Liu, Q.

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Luk, T. S.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Luo, S.

Luo, X.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Ma, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Ma, W.

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ming, X.

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Minh, N. Q.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Ouyang, Z.

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Park, J. W.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Peng, X. Y.

Pu, M.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Qiu, J.

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D 48(3), 035105 (2015).
[Crossref]

Rhee, J. Y.

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Saracoglu, O. G.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Sellier, A.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, H.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Song, M.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Sung, H. K.

Sykora, M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Tan, Q.

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Tao, K.

D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
[Crossref]

Taylor, A. J.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Teng, J. H.

Teperik, T. V.

Törmä, P.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Trang, P. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Trung, N. T.

Tuong, P. V.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Turhan-Sayan, G.

Turkmen, M.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Üstün, K.

van Dijken, S.

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Van Tuong, P.

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
[Crossref]

Viet, D. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Wang, B.

Wang, B. X.

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700107 (2017).
[Crossref]

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, C.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, Q.

J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
[Crossref] [PubMed]

D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
[Crossref]

Wang, S.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wang, X.

Wang, Y.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Wen, Y.

Weng, X.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wu, F.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Xiao, D.

J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
[Crossref] [PubMed]

D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
[Crossref]

Xie, J.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Xie, Q.

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

Xu, Y.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Yan, S.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Yoo, Y. J.

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Yu, H.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Yu, X.

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zeng, X.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, D. H.

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhang, N.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Zhang, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Zhao, J.

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhao, Z.

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhou, P.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Zhu, H.

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Zuo, D.

ACS Nano (1)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Adv. Funct. Mater. (1)

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700107 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photon. Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

J. Appl. Phys. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

J. Electromagn. Waves Appl. (1)

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

J. Mater. Sci. (1)

B. X. Wang, Q. Xie, G. Dong, and H. Zhu, “Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators,” J. Mater. Sci. 28(22), 17215–17220 (2017).
[Crossref]

J. Opt. (2)

P. V. Tuong, Y. J. Yoo, J. W. Park, Y. J. Kim, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Multi-plasmon-induced perfect absorption at the third resonance in metamaterials,” J. Opt. 17(12), 125101 (2015).
[Crossref]

G. Dayal and S. Anantha Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

G. Dayal and S. A. Ramakrishna, “Flexible metamaterial absorbers with multi-band infrared response,” J. Phys. D 48(3), 035105 (2015).
[Crossref]

Laser Photon. Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8(4), 495–520 (2014).
[Crossref]

Nat. Commun. (1)

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. van Dijken, and P. Törmä, “Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays,” Nat. Commun. 6(1), 7072 (2015).
[Crossref] [PubMed]

Opt. Commun. (3)

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Opt. Express (10)

Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861–3868 (2015).
[Crossref] [PubMed]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6), A997–A1006 (2013).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
[Crossref] [PubMed]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref] [PubMed]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B Condens. Matter Mater. Phys. 80(20), 201401 (2009).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075404 (2014).
[Crossref]

Phys. Rev. Lett. (5)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Plasmonics (3)

X. Ming and Q. Tan, “Design method of a broadband wide-angle plasmonic absorber in the visible range,” Plasmonics 12(1), 117–124 (2017).
[Crossref]

Y. Wang, M. Song, M. Pu, Y. Gu, C. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics 11(5), 1201–1206 (2016).
[Crossref]

D. Xiao, K. Tao, and Q. Wang, “Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array,” Plasmonics 11(2), 389–394 (2016).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Sci. Rep. (2)

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) and (b) are respectively the side-view and front-view of the suggested device.
Fig. 2
Fig. 2 (a) Absorption spectra of the suggested device; (b), (c) and (d) are respectively the dependence of the absorption spectra of the suggested device on the parameter changes of period a, cross length l, and cross width w.
Fig. 3
Fig. 3 (a), (b), and (c) are respectively the |E|, real Ez, and |Hy| field distributions of the frequency point A of the suggested device; (d), (e), and (f) are respectively the |E|, real Ez, and |Hy| field distributions of the frequency point B of the suggested device.
Fig. 4
Fig. 4 Left section of the figure provides the dependence of the absorption spectra of the suggested device on the change of the dielectric slab thickness t; (a) and (b) are respectively the |E| and real Ez field distributions of the frequency point C of the designed device in thickness t = 5 μm; (c), and (d) show respectively the |E| and real Ez field distributions of the frequency point D of the designed device in thickness t = 5 μm.