Abstract

We present the characteristics of indirect frequency measurement system based on off-axis digital holography (DH) for vibrating objects, which works on phase change characteristics of a medium where sound wave propagates. The sound field measurement method using off-axis DH already proposed by the author’s group is applied to the measurement of vibration frequency of arbitrary sound sources. In DH based sound imaging for frequency measurement, object wave passes near to vibrating object and the interference patterns are recorded in digital holograms as a function of time. After using inverse Fresnel calculation, acousto-optic data processing, and Fourier analysis, vibration frequency of an object of interest can be measured. In this paper, the measurement capability of vibration frequency for different objects and quantitative characteristics of the sound power are evaluated experimentally. The frequency range of the experimental results are from hundreds Hz to tens of kHz that covers audible range. The comparison with microphone recording and the analysis have also been carried out to check the strength and stability of the proposed scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-plane slightly off-axis digital holography based on a single cube beam splitter

Miguel León-Rodríguez, Juan A. Rayas, Raúl R. Cordero, Amalia Martínez-García, Adrián Martínez-Gonzalez, Alejandro Téllez-Quiñones, Pedro Yañez-Contreras, and Orlando Medina-Cázares
Appl. Opt. 57(10) 2727-2735 (2018)

Optical voice encryption based on digital holography

Sudheesh K. Rajput and Osamu Matoba
Opt. Lett. 42(22) 4619-4622 (2017)

Ultra-short pulsed off-axis digital holography for imaging dynamic targets in highly scattering conditions

Ali Ziaee, Colin Dankwart, Marco Minniti, James Trolinger, and Derek Dunn-Rankin
Appl. Opt. 56(13) 3736-3743 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jueptner, Digital Holography; Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  2. T. Kreis, Handbook of Holographic Interferometry (Wiley, 2005).
  3. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
  4. X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
    [Crossref]
  5. X. Quan, O. Matoba, and Y. Awatsuji, “Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy,” Opt. Lett. 42(9), 1796–1799 (2017).
    [Crossref] [PubMed]
  6. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25(1), 28–30 (2000).
    [Crossref] [PubMed]
  7. O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
    [Crossref] [PubMed]
  8. K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, “High-speed imaging of sound using parallel phase-shifting interferometry,” Opt. Express 24(12), 12922–12932 (2016).
    [Crossref] [PubMed]
  9. S. K. Rajput and O. Matoba, “Optical voice encryption based on digital holography,” Opt. Lett. 42(22), 4619–4622 (2017).
    [Crossref] [PubMed]
  10. O. J. Løkberg, “ESPI- the ultimate holographic tool for vibration analysis,” J. Acoust. Soc. Am. 75(6), 1783–1791 (1984).
    [Crossref]
  11. J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer based on high-speed digital in-line holography,” Appl. Opt. 54(11), 3185–3196 (2015).
    [Crossref] [PubMed]
  12. O. J. Løkberg and K. Høgmoen, “Vibration phase mapping using electronic speckle pattern interferometry,” Appl. Opt. 15(11), 2701–2704 (1976).
    [Crossref] [PubMed]
  13. P. Picart, J. Leval, J. C. Pascal, J. P. Boileau, M. Grill, J. M. Breteau, B. Gautier, and S. Gillet, “2D full field vibration analysis with multiplexed digital holograms,” Opt. Express 13(22), 8882–8892 (2005).
    [Crossref] [PubMed]
  14. F. Joud, F. Verpillat, F. Laloë, M. Atlan, J. Hare, and M. Gross, “Fringe-free holographic measurements of large-amplitude vibrations,” Opt. Lett. 34(23), 3698–3700 (2009).
    [Crossref] [PubMed]
  15. J. Leval, P. Picart, J. P. Boileau, and J. C. Pascal, “Full-field vibrometry with digital Fresnel holography,” Appl. Opt. 44(27), 5763–5772 (2005).
    [Crossref] [PubMed]
  16. N. Demoli, “Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection,” Opt. Express 14(6), 2117–2122 (2006).
    [Crossref] [PubMed]
  17. F. Joud, F. Laloë, M. Atlan, J. Hare, and M. Gross, “Imaging a vibrating object by sideband digital holography,” Opt. Express 17(4), 2774–2779 (2009).
    [Crossref] [PubMed]
  18. M. Gross, “Heterodyne holography with full control of both the signal and reference arms,” Appl. Opt. 55(3), A8–A16 (2016).
    [Crossref] [PubMed]
  19. M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
    [Crossref] [PubMed]
  20. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006).
    [Crossref] [PubMed]
  21. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46(23), 5719–5727 (2007).
    [Crossref] [PubMed]
  22. G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
    [Crossref]
  23. J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
    [Crossref]
  24. T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
    [Crossref] [PubMed]
  25. M. Stipčević, N. Demoli, H. Skenderovic, M. Loncaric, A. Radman, J. Gladic, and D. Lovric, “Effective procedure for determination of unknown frequency and phase using time-averaged digital holography,” Opt. Express 25(9), 10241–10254 (2017).
    [Crossref]
  26. D. Mas, J. Espinosa, A. B. Roig, B. Ferrer, J. Perez, and C. Illueca, “Measurement of wide frequency range structural microvibrations with a pocket digital camera and sub-pixel techniques,” Appl. Opt. 51(14), 2664–2671 (2012).
    [Crossref] [PubMed]
  27. D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
    [Crossref]
  28. D. Mas, B. Ferrer, J. T. Sheridan, and J. Espinosa, “Resolution limits to object tracking with subpixel accuracy,” Opt. Lett. 37(23), 4877–4879 (2012).
    [Crossref] [PubMed]
  29. B. Ferrer, J. Espinosa, A. B. Roig, J. Perez, and D. Mas, “Vibration frequency measurement using a local multithreshold technique,” Opt. Express 21(22), 26198–26208 (2013).
    [Crossref] [PubMed]
  30. J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
    [Crossref] [PubMed]
  31. A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
    [Crossref] [PubMed]
  32. P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
    [Crossref]

2017 (4)

2016 (5)

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, “High-speed imaging of sound using parallel phase-shifting interferometry,” Opt. Express 24(12), 12922–12932 (2016).
[Crossref] [PubMed]

M. Gross, “Heterodyne holography with full control of both the signal and reference arms,” Appl. Opt. 55(3), A8–A16 (2016).
[Crossref] [PubMed]

2015 (3)

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer based on high-speed digital in-line holography,” Appl. Opt. 54(11), 3185–3196 (2015).
[Crossref] [PubMed]

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

2014 (2)

O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
[Crossref] [PubMed]

P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
[Crossref]

2010 (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).

2009 (2)

2007 (1)

2006 (2)

2005 (2)

2000 (1)

1984 (1)

O. J. Løkberg, “ESPI- the ultimate holographic tool for vibration analysis,” J. Acoust. Soc. Am. 75(6), 1783–1791 (1984).
[Crossref]

1976 (1)

Atlan, M.

Awatsuji, Y.

X. Quan, O. Matoba, and Y. Awatsuji, “Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy,” Opt. Lett. 42(9), 1796–1799 (2017).
[Crossref] [PubMed]

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
[Crossref] [PubMed]

Barrera-Figueroa, S.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Boileau, J. P.

Breteau, J. M.

Chen, D.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Chitanont, N.

Cretin, B.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
[Crossref]

Demoli, N.

Du, Q.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Endo, Y.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Espinosa, J.

Euphrasie, S.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
[Crossref]

Faure, C.

Ferrer, B.

Fu, Y.

Furlong, C.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

Gautier, B.

Gautier, F.

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer based on high-speed digital in-line holography,” Appl. Opt. 54(11), 3185–3196 (2015).
[Crossref] [PubMed]

Gillet, S.

Gladic, J.

Grill, M.

Gross, M.

Guignard, J.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

Gusev, M. E.

Hare, J.

Høgmoen, K.

Hu, J.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Ikeda, Y.

Illueca, C.

Inokuchi, H.

Ishikawa, K.

Ito, T.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Jacobsen, F.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Javidi, B.

Joud, F.

Kakue, T.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Khaleghi, M.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).

Laloë, F.

Leclercq, M.

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

Leval, J.

Løkberg, O. J.

O. J. Løkberg, “ESPI- the ultimate holographic tool for vibration analysis,” J. Acoust. Soc. Am. 75(6), 1783–1791 (1984).
[Crossref]

O. J. Løkberg and K. Høgmoen, “Vibration phase mapping using electronic speckle pattern interferometry,” Appl. Opt. 15(11), 2701–2704 (1976).
[Crossref] [PubMed]

Loncaric, M.

Lovric, D.

Mas, D.

Masuda, N.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Matoba, O.

Nishio, K.

P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Nishitsuji, T.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Nitta, K.

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
[Crossref] [PubMed]

Niwa, H.

Nomura, T.

Oikawa, Y.

Onuma, T.

Osten, W.

Pan, M.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Pascal, J. C.

Pedrini, G.

Penelet, G.

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

Perez, J.

Pezerat, C.

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

Pézerat, C.

Picart, P.

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer based on high-speed digital in-line holography,” Appl. Opt. 54(11), 3185–3196 (2015).
[Crossref] [PubMed]

P. Picart, J. Leval, J. C. Pascal, J. P. Boileau, M. Grill, J. M. Breteau, B. Gautier, and S. Gillet, “2D full field vibration analysis with multiplexed digital holograms,” Opt. Express 13(22), 8882–8892 (2005).
[Crossref] [PubMed]

J. Leval, P. Picart, J. P. Boileau, and J. C. Pascal, “Full-field vibrometry with digital Fresnel holography,” Appl. Opt. 44(27), 5763–5772 (2005).
[Crossref] [PubMed]

Poittevin, J.

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer based on high-speed digital in-line holography,” Appl. Opt. 54(11), 3185–3196 (2015).
[Crossref] [PubMed]

Quan, X.

X. Quan, O. Matoba, and Y. Awatsuji, “Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy,” Opt. Lett. 42(9), 1796–1799 (2017).
[Crossref] [PubMed]

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

Radman, A.

Rajput, S. K.

Roig, A. B.

Rosowski, J. J.

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

Sheridan, J. T.

Shimobaba, T.

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

Skenderovic, H.

Stipcevic, M.

Teyssieux, D.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
[Crossref]

Tian, W.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Torras-Rosell, A.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Verpillat, F.

Wassereau, T.

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

Xia, P.

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Yatabe, K.

Yoshii, M.

Zeng, Z.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Zhao, J.

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Appl. Opt. (7)

Electron. Lett. (1)

P. Xia, K. Nishio, O. Matoba, and Y. Awatsuji, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Exp. Therm. Fluid Sci. (1)

G. Penelet, M. Leclercq, T. Wassereau, and P. Picart, “Measurement of density fluctuations using digital holographic interferometry in a standing wave thermoacoustic oscillator,” Exp. Therm. Fluid Sci. 70, 176–184 (2016).
[Crossref]

J. Acoust. Soc. Am. (2)

O. J. Løkberg, “ESPI- the ultimate holographic tool for vibration analysis,” J. Acoust. Soc. Am. 75(6), 1783–1791 (1984).
[Crossref]

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. Khaleghi, J. Guignard, C. Furlong, and J. J. Rosowski, “Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography,” J. Biomed. Opt. 20(11), 111202 (2015).
[Crossref] [PubMed]

Measurement (1)

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement 44(10), 2205–2216 (2011).
[Crossref]

Opt. Eng. (1)

J. Poittevin, F. Gautier, C. Pezerat, and P. Picart, “High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures,” Opt. Eng. 55(12), 121717 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Opt. Rev. (1)

X. Quan, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22(2), 349–353 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

J. Hu, M. Pan, Z. Zeng, J. Hu, D. Chen, W. Tian, J. Zhao, and Q. Du, “A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components,” Rev. Sci. Instrum. 87(10), 105002 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Kakue, Y. Endo, T. Nishitsuji, T. Shimobaba, N. Masuda, and T. Ito, “Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena,” Sci. Rep. 7(1), 10413–10422 (2017).
[Crossref] [PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).

Other (2)

U. Schnars and W. Jueptner, Digital Holography; Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

T. Kreis, Handbook of Holographic Interferometry (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Optical setup for frequency measurement for vibrating objects based on off-axis DH and (b) diagram to show directions of sound propagation and laser beam. BS: Beam splitter, OM: Object mirror, RM: Reference mirror, HSC: High speed camera, and BE: Beam expander.
Fig. 2
Fig. 2 Block diagram for reconstruction and detection of frequency. IFP: Inverse Fresnel propagation, DP: Data processing, and FT: Fourier transform.
Fig. 3
Fig. 3 Results to determine the frequencies of tuning fork. (a) One of the recorded hologram for tuning fork of 528 Hz, (b) reconstructed phase image from hologram, (c) plot of phase values against time, and (d) detected frequency at 528 Hz of tuning fork. The image size in Fig. 3(a) and 3(b) is 8.192 mm × 8.192 mm.
Fig. 4
Fig. 4 Results to determine the fundamental frequency of loudspeaker diaphragm at 300 Hz. (a) One of the recorded hologram, (b) reconstructed phase image from hologram, (c) plot of phase values against time, and (d) detected frequency at 300 Hz of loudspeaker diaphragm (membrane).
Fig. 5
Fig. 5 Results to determine the fundamental frequency of loudspeaker diaphragm at 500 Hz. (a) One of the recorded hologram, (b) reconstructed phase image from hologram, (c) plot of phase values against time, and (d) detected frequency at 500 Hz of loudspeaker diaphragm (membrane), and (e) detected frequency at 500 Hz with 100 frames.
Fig. 6
Fig. 6 Results to determine the fundamental frequency of loudspeaker diaphragm at 12,000 Hz when point (244, 186) is selected. (a) Plot of phase values against time and (b) detected frequency at 12,000 Hz of loudspeaker diaphragm (membrane).
Fig. 7
Fig. 7 (a) The detected frequency at 12,000 Hz of loudspeaker diaphragm (membrane) when average of points (10, 210), (184, 126) and (244, 186) have been used and (b) detected frequency at 12,000 Hz of loudspeaker diaphragm (membrane) when average of all points are used.
Fig. 8
Fig. 8 (a) Comparative plot of normalized peak signal as a function of the amplitude coefficient of sinusoidal data at 12,000 Hz for DH and microphone measurements.
Fig. 9
Fig. 9 Stability measurement. Averages and standard deviations of normalized amplitude of the peak signal obtained by DH as a function of the amplitude coefficient of sinusoidal data at 12,000 Hz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δn= (n1) γ P P 0 ,
h(x,y)= | o(x,y) | 2 + | r(x,y) | 2 + o * (x,y)r(x,y) +o(x,y) r * (x,y),
o( x,y )=| o( x,y ) |exp( ip( x,y ) ) =| o( x,y ) |exp( i 2πΔn( x,y )d λ ),
a(ξ,ρ,z)=a(ξ,ρ,0)×exp[ i 2πz λ 1 ( λξ ) 2 ( λρ ) 2 ].
b( x , y )=IFT{ a(ξ,ρ,z) } =IFT{ a(ξ,ρ,0)×exp[ i 2πz λ 1 ( λξ ) 2 ( λρ ) 2 ] }.
p( x , y )=angle[ b( x , y ) ].
T p (β)=FT[ t p (α) ].