Abstract

A two-core photonic crystal fiber (TC-PCF) based highly-sensitive temperature sensor was proposed and demonstrated. By selectively infiltrating the central airhole with refractive index liquid (RIL), a three-parallel-waveguide structure was formed. A dual-component interference pattern, consisting of a large spectrum envelope and fine interference fringes, was observed in the transmission spectrum. The simulation results confirmed that the interference was arising from a few hybrid supermodes in the fiber coupler structure. They were in good agreement with the experimental observation on the discrete temperature windows with different temperature sensitivities due to couplings between different hybrid supermodes in respective temperature windows. By tracing the wavelength shifts of the large spectrum envelope, high sensitivities were achieved at 42.621 nm/°C in the temperature range from 54.2 °C to 55 °C and 32.159 nm/°C from 51.8 °C to 52.6 °C.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber

Zhilin Xu, Junlong Lim, Dora Juan Juan Hu, Qizhen Sun, Rebecca Yen-Ni Wong, Kun Li, Meng Jiang, and Perry Ping Shum
Opt. Express 24(2) 1699-1707 (2016)

High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore

J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang
Opt. Express 25(8) 9406-9415 (2017)

Temperature sensor based on liquid-filled negative curvature optical fibers

Chengli Wei, Joshua T. Young, Curtis R. Menyuk, and Jonathan Hu
OSA Continuum 2(7) 2123-2130 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.
  2. L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).
  3. Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
    [Crossref]
  4. X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
    [Crossref]
  5. E. Sławomir, P. Lesiak, and T. R. Woliński, “Optofluidic Photonic Crystal Fiber-Based Sensors,” J. Lightwave Technol. 35(16), 3399–3405 (2017).
    [Crossref]
  6. J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
    [Crossref]
  7. L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
    [Crossref]
  8. C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
    [Crossref]
  9. A. R. Hawkins and S. Holger, Handbook of Optofluidics (CRC Press, 2010), Chap. 15.
  10. C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.
  11. D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
    [Crossref]
  12. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
    [Crossref]
  13. C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
    [Crossref]
  14. J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
    [Crossref]
  15. Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
    [Crossref]
  16. M. Yang and D. N. Wang, “Photonic Crystal Fiber with Two Infiltrated Air Holes for Temperature Sensing With Excellent Temporal Stability,” J. Lightwave Technol. 30(21), 3407–3412 (2012).
    [Crossref]
  17. Cargille Laboratories, “Datasheet of Refractive Index Liquid Series A n-1.4600,” (9th Dec. 2018), https://cargille.com/wp-content/uploads/2018/06/Refractive-Index-Liquid-Series-A-n-1.4600-at-589.3-nm-and-25%C2%B0C.pdf
  18. Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.
  19. M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
    [Crossref]
  20. D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
    [Crossref]
  21. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
    [Crossref]
  22. Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37(22), 4747–4749 (2012).
    [Crossref]
  23. Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
    [Crossref]
  24. Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
    [Crossref]
  25. A. W. Snyder and W. R. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68(3), 297–309 (1978).
    [Crossref]
  26. G. E. Town, Y. Wu, R. McCosker, and B. Ole, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [Crossref]
  27. Y. Yan, J. Toulouse, I. Velchev, and S. V. Rotkin, “Decoupling and asymmetric coupling in triplecore photonic crystal fibers,” J. Opt. Soc. Am. B 25(9), 1488–1495 (2008).
    [Crossref]
  28. Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
    [Crossref]
  29. L. Hu, W. G. Zhang, H. Y. Wang, P. C. Geng, S. S. Zhang, S. Gao, C. Yang, and J. Li, “Fiber in-line Mach–Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing,” Opt. Lett. 38(20), 4019–4022 (2013).
    [Crossref]
  30. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265 (2013).
    [Crossref]
  31. K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
    [Crossref]
  32. X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
    [Crossref]
  33. D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
    [Crossref]
  34. J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
    [Crossref]
  35. Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
    [Crossref]
  36. Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
    [Crossref]

2019 (1)

2018 (7)

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

2017 (5)

E. Sławomir, P. Lesiak, and T. R. Woliński, “Optofluidic Photonic Crystal Fiber-Based Sensors,” J. Lightwave Technol. 35(16), 3399–3405 (2017).
[Crossref]

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
[Crossref]

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

2016 (2)

Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

2015 (2)

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (5)

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37(22), 4747–4749 (2012).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

M. Yang and D. N. Wang, “Photonic Crystal Fiber with Two Infiltrated Air Holes for Temperature Sensing With Excellent Temporal Stability,” J. Lightwave Technol. 30(21), 3407–3412 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

2011 (2)

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

1978 (1)

Algorri, J. F.

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Bai, Z.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Cai, H.

Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.

Cai, J.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Chao, D.

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

Chen, H.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

Chen, Q.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Chen, Y.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Chen, Z.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Chin, K.

Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.

Chung, Y.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

Cui, Y.

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Dinh, X. Q.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Ertman, S.

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Fan, X.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Fan, Z.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

Fang, Z.

Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.

Gao, S.

Geng, P. C.

Gong, C. Y.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Gong, Y.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Gunawardena, D.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Günther, S.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Guo, Y.

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

Han, T.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Hawkins, A. R.

A. R. Hawkins and S. Holger, Handbook of Optofluidics (CRC Press, 2010), Chap. 15.

Hoffmann, L.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Holger, S.

A. R. Hawkins and S. Holger, Handbook of Optofluidics (CRC Press, 2010), Chap. 15.

Hou, J.

Hou, M.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Hu, D. J. J.

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Hu, J.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Hu, L.

Huang, Y.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Huang, Z.

Humbert, G.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Jiang, D. S.

Jiang, M.

Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Jiang, W.

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

Jiang, X.

Keiser, G.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Kim, B.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

Kim, B. H.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

Lesiak, P.

Li, B.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Li, J.

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

L. Hu, W. G. Zhang, H. Y. Wang, P. C. Geng, S. S. Zhang, S. Gao, C. Yang, and J. Li, “Fiber in-line Mach–Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing,” Opt. Lett. 38(20), 4019–4022 (2013).
[Crossref]

Li, K.

Li, S.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

Li, X. G.

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

Li, Z.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Liao, C.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Liao, C. R.

Lim, J.

Lim, J. L.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Lin, C.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Lin, Y. G.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Liu, B.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Liu, D.

Liu, Q.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

Liu, S.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Liu, Z.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Lu, C.

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

Lu, P.

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

Lu, Q.

Lu, Y.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Luan, F.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Luo, H.

Luo, Y.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Ma, J.

Ma, K.

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

Mathias, S. M.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Matthias, G.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

McCosker, R.

Milenko, K.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Milenko, K. B.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Naeem, K.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

Ni, W.

Ole, B.

Peng, G. D.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Peng, Y.

Ping Shum, P.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Poudereux, D.

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Qu, R.

Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.

Quyen Dinh, X.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Rao, Y. J.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Rotkin, S. V.

Sánchez-Pena, J. M.

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Sebastian, K.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Shao, L.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Shum, P. P.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Slawomir, E.

Snyder, A. W.

Su, H.

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

Sun, Q.

Tam, H. Y.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Tan, X.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Tapetado, A.

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Tong, W.

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Torsten, W.

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Toulouse, J.

Town, G. E.

Velchev, I.

Wang, C.

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Wang, D. N.

Wang, G.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Wang, G. H.

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

Wang, H. Y.

Wang, Q.

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

Wang, Y.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37(22), 4747–4749 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Wolinski, T.

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Wolinski, T. R.

Wong, R. Y. N.

Wu, Y.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

G. E. Town, Y. Wu, R. McCosker, and B. Ole, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[Crossref]

Wu, Z.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Xiang, Y.

Xiao, R.

Xu, Z.

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. N. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
[Crossref]

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Xue, Z.

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

Yan, Y.

Yang, C.

Yang, J.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Yang, M.

Yang, X.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Yao, J.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

Yong, Z.

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

Young, W. R.

Yu, H. H.

Zeng, S.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Zhang, H.

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Zhang, L.

Zhang, S. S.

Zhang, T.

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Zhang, W. G.

Zhang, Y.

Zhao, X.

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Zhao, Y.

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

Zheng, Y.

Y. Zheng, P. P. Shum, S. Liu, B. Li, Y. Xiang, Y. Luo, Y. Zhang, W. Ni, Z. Wu, X. Q. Dinh, and S. Zeng, “Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor,” Opt. Express 27(21), 30629–30638 (2019).
[Crossref]

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Zhu, F.

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

Zhu, Y.

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Zografopoulos, D. C.

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Zuo, J.

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

Appl. Phys. Express (1)

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8(4), 046701 (2015).
[Crossref]

IEEE Access (1)

J. Zuo, T. Han, J. Yang, Y. Chen, Y. G. Lin, and J. Cai, “High Sensitivity Temperature Sensor With an Avoided-Crossing Based Selective-Filling High Birefringent Photonic Crystal Fiber Sagnac Interferometer,” IEEE Access 6, 45527–45533 (2018).
[Crossref]

IEEE Photonics J. (2)

Y. Cui, P. P. Shum, D. J. J. Hu, G. H. Wang, G. Humbert, and X. Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics J. 4(5), 1801–1808 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled with Liquid Crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

IEEE Sens. J. (4)

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “High-sensitivity temperature sensor based on a selectively-polymer-filled two-core photonic crystal fiber in-line interferometer,” IEEE Sens. J. 15(7), 3998–4003 (2015).
[Crossref]

X. Yang, Y. Lu, B. Liu, and J. Yao, “Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber,” IEEE Sens. J. 17(21), 6948–6952 (2017).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, and Q. Sun, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[Crossref]

Instrum. Sci. Technol. (1)

X. G. Li, Z. Yong, Z. Xue, and C. Lu, “High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber,” Instrum. Sci. Technol. 46(3), 253–264 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

Z. Xu, B. Li, D. J. J. Hu, Z. Wu, S. Ertman, T. Wolinski, W. Tong, and P. P. Shum, “Hybrid photonic crystal fiber for highly sensitive temperature measurement,” J. Opt. 20(7), 075801 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

C. Y. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, and Y. J. Rao, “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab Chip 18(18), 2741–2748 (2018).
[Crossref]

Micromachines (1)

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in Microstructured Optical Fibers,” Micromachines 9(4), 145–149 (2018).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

D. Chao, Q. Wang, Y. Zhao, and J. Li, “Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating,” Opt. Fiber Technol. 34, 12–15 (2017).
[Crossref]

Opt. Lett. (6)

Opto-Electron. Adv. (1)

Y. Zheng, Z. Wu, P. Ping Shum, Z. Xu, G. Keiser, G. Humbert, H. Zhang, S. Zeng, and X. Quyen Dinh, “Sensing and lasing applications of whispering gallery mode microresonators,” Opto-Electron. Adv. 1(9), 18001501–18001510 (2018).
[Crossref]

Photonics Res. (1)

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Proc. Estonian Acad. Sci. Eng. (1)

L. Hoffmann, S. M. Mathias, K. Sebastian, G. Matthias, S. Günther, and W. Torsten, “Applications of fibre optic temperature measurement,” Proc. Estonian Acad. Sci. Eng. 13(4), 363–378 (2007).

Sensors (1)

J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated Photonic Crystal Fibers for Sensing Applications,” Sensors 18(12), 4263 (2018).
[Crossref]

Other (5)

Y. Zhang, H. Su, K. Ma, F. Zhu, Y. Guo, and W. Jiang, Temperature Sensing, I. Stanimirovic and Z. Stanimirovic, eds. (IntechOpen, 2018), pp. 5–21.

A. R. Hawkins and S. Holger, Handbook of Optofluidics (CRC Press, 2010), Chap. 15.

C. Wang, P. P. Shum, D. J. J. Hu, Z. Xu, Y. Zhu, Y. Luo, S. Liu, and Y. Zheng, “Temperature Sensor Based on Selectively Liquid Infiltrated Dual Core Photonic Crystal Fiber,” in 2019 IEEE Photonics Conference (IPC) (2019), pp. 1–2.

Cargille Laboratories, “Datasheet of Refractive Index Liquid Series A n-1.4600,” (9th Dec. 2018), https://cargille.com/wp-content/uploads/2018/06/Refractive-Index-Liquid-Series-A-n-1.4600-at-589.3-nm-and-25%C2%B0C.pdf

Z. Fang, K. Chin, R. Qu, and H. Cai, “Fiber Sensitivities and Fiber Devices,” in Fundamentals of optical fiber sensors (John Wiley & Sons, 2012), Vol. 226.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) SEM image of the TC-PCF; (b) Microscope image of the TC-PCF with RIL-filled central core; (c) Schematic diagram of the experimental setup for temperature sensing.
Fig. 2.
Fig. 2. Dispersion curves of the unfilled TC-PCF and the single liquid core PCF with the mode distribution; (a) The LP01 mode (inset figure) of single liquid core PCF and the fundamental supermodes of the unfilled TC-PCF (inset figure). (b) The LP11 mode (inset figure) of single liquid core PCF and the LP11 supermodes of the unfilled TC-PCF (inset figure); all mode profiles are plotted at 50 $^\circ \textrm{C}$, 1500 $nm$ with only x polarization for simplification, the white arrow indicates the direction of electric field distribution.
Fig. 3.
Fig. 3. Simulation of the first eight supermodes field distribution of the RIL-filled TC-PCF at 1500 $nm$; (a)–(c) The fundamental supermodes, (a) symmetric mode, (b) decoupling mode, and (c) antisymmetric mode; (d)–(h) The higher-order supermodes; all mode profiles are plotted at 50 $^\circ \textrm{C}$, 1500 $nm$, only the x-polarization state was plotted, and the white arrows indicate the direction of the electric field distribution.
Fig. 4.
Fig. 4. (a) Transmission spectra of the proposed dual-component interference at 54 $^\circ \textrm{C}$ and 54.4 $^\circ \textrm{C},$ with a RIL-filled TC-PCF length at 1.8 $cm$; (b) Comparison of experimental results (solid black curve) and the simulated result (red dash curve) of a 1.8 $cm$ RIL-filled TC-PCF at 54 $^\circ \textrm{C}$; (c) Peak wavelength shifts as a function of temperature ranges from 50 $^\circ \textrm{C}$ to 58.2 $^\circ \textrm{C}$, the inset figure represents the temperature sensitivity of proposed sensor with temperature increase (solid black square) and temperature decrease (red open circle) in the temperature range from 50 $^\circ \textrm{C}$ to 58.2 $^\circ \textrm{C}$;
Fig. 5.
Fig. 5. X-polarized supermodes interference condition as a function of temperature; (a) Represents the interference condition from 51.8 $^\circ \textrm{C}$ to 52.6 $^\circ \textrm{C};$ (b) Represents the interference condition from 54.2 $^\circ \textrm{C}$ to 55 $^\circ \textrm{C}$; The insets are interfering modes involved.
Fig. 6.
Fig. 6. X-polarized supermodes interference condition as a function of temperature; (a) Represents the interference condition from 53.4 $^\circ \textrm{C}$ to 54.2 $^\circ \textrm{C}$; (b) Represents the interference condition from 55$\; ^\circ \textrm{C}\; $to 58.2 $^\circ \textrm{C}$; The insets are interfering modes involved.
Fig. 7.
Fig. 7. X-polarized supermodes interference condition as a function of temperature; (a) Represents the interference condition from 50 $^\circ \textrm{C}$ to 51.8 $^\circ \textrm{C}$; (b) Represents the interference condition from 52.6 $\; ^\circ \textrm{C}\; $to 53.4 $^\circ \textrm{C}$; The insets are interfering modes involved.

Tables (2)

Tables Icon

Table 1. Comparison of experimental results of various liquid infiltrated PCF-based temperature sensors

Tables Icon

Table 2. The comparison between simulation and experiment results of different temperature windows

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n0(λ)=1.447925+4073.4λ2+41636939λ4 (λ in nm),
n= 0.000389×(T25)+n0(λ).
I = I1+I2+2I1I2cosθ,
Δθ=2π(ΔnTL+LTΔn)ΔTλ,
S=FSRλΔnTL=λΔnΔnT,

Metrics