Abstract

This paper presents an octagonal photonic crystal fiber based plasmonic refractive index (RI) sensor using graphene to measure the moisture content in transformer oil. For better insulation, moisture content in transformer oil needs to be measured, as the moisture content degrades the insulation property of the oil. Basically, the proposed sensor is able to detect the change in RI of the oil as the moisture content changes the RI. This work is numerically simulated by a finite element method-based simulation tool and the simulation results are processed using a MATLAB environment to understand the performance. Using the proposed sensor, the maximum possible amplitude sensitivity can be obtained as 31,240 RIU-1 and 30,830 RIU-1 for the x- and y-polarized modes, respectively. Besides, the proposed sensor has also found the figure of merit (FOM) to be 5,000. Both the results are found to be highest to date (to the best of my knowledge). The novelty of this work is the idea of measuring the moisture content of transformer oil using graphene plasmonic RI sensor, the high FOM, and the highest amplitude sensitivity.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of a highly sensitive flat fiber plasmonic refractive index sensor

Moutusi De and Vinod Kumar Singh
Appl. Opt. 59(2) 380-388 (2020)

Asymmetric core-guided polarization-dependent plasmonic biosensor

Firoz Haider, Md. Mashrafi, Rakib Haider, Rifat Ahmmed Aoni, and Rajib Ahmed
Appl. Opt. 59(26) 7829-7835 (2020)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Laskar and S. Bordoloi, “Monitoring of moisture in transformer oil using optical fiber as sensor,” J. Photonics 2013, 1–7 (2013).
    [Crossref]
  2. B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
    [Crossref]
  3. D. K. Mahanta and S. Laskar, “Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor,” IEEE Sens. J. 18(4), 1506–1512 (2018).
    [Crossref]
  4. J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
    [Crossref]
  5. J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
    [Crossref]
  6. N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
    [Crossref]
  7. A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
    [Crossref]
  8. S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
    [Crossref]
  9. K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
    [Crossref]
  10. H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
    [Crossref]
  11. P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  12. A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
    [Crossref]
  13. X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
    [Crossref]
  14. A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
    [Crossref]
  15. A. Yasli and H. J. O. E. Ademgil, “Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors,” Opt. Eng. 57(03), 1 (2018).
    [Crossref]
  16. W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
    [Crossref]
  17. P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
    [Crossref]
  18. H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
    [Crossref]
  19. F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
    [Crossref]
  20. C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
    [Crossref]
  21. S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
    [Crossref]
  22. S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
    [Crossref]
  23. P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
    [Crossref]
  24. S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
    [Crossref]
  25. S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
    [Crossref]
  26. S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
    [Crossref]
  27. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
    [Crossref]
  28. M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57(8), 1883–1886 (2018).
    [Crossref]
  29. A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
    [Crossref]
  30. A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
    [Crossref]
  31. Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
    [Crossref]
  32. G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
    [Crossref]
  33. A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
    [Crossref]
  34. K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
    [Crossref]
  35. M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
    [Crossref]
  36. S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
    [Crossref]
  37. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
    [Crossref]
  38. L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47(19), 12727–12731 (1993).
    [Crossref]
  39. M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
    [Crossref]
  40. A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  41. N. L. Rangel and J. M. Seminario, “Vibronics and plasmonics based graphene sensors,” J. Chem. Phys. 132(12), 125102 (2010).
    [Crossref]
  42. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
    [Crossref]
  43. S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
    [Crossref]

2021 (1)

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

2020 (5)

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

2019 (5)

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

2018 (14)

A. Yasli and H. J. O. E. Ademgil, “Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors,” Opt. Eng. 57(03), 1 (2018).
[Crossref]

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

D. K. Mahanta and S. Laskar, “Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor,” IEEE Sens. J. 18(4), 1506–1512 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57(8), 1883–1886 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
[Crossref]

2017 (3)

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

2016 (3)

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

2015 (2)

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

2014 (1)

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

2013 (2)

S. Laskar and S. Bordoloi, “Monitoring of moisture in transformer oil using optical fiber as sensor,” J. Photonics 2013, 1–7 (2013).
[Crossref]

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

2010 (1)

N. L. Rangel and J. M. Seminario, “Vibronics and plasmonics based graphene sensors,” J. Chem. Phys. 132(12), 125102 (2010).
[Crossref]

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2007 (2)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

2005 (1)

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

2001 (1)

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

1993 (1)

L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47(19), 12727–12731 (1993).
[Crossref]

Abbott, D.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Abdulrazak, L. F.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Ademgil, H. J. O. E.

A. Yasli and H. J. O. E. Ademgil, “Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors,” Opt. Eng. 57(03), 1 (2018).
[Crossref]

Adikan, F. M.

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Ahmed, K.

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Ahmed, R.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Akter, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Ali, J.

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

Alonso, Á.M.

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

Amiri, I.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

An, G.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

Anower, M.

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

Azab, M. Y.

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

Azzam, S. I.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Bordoloi, S.

S. Laskar and S. Bordoloi, “Monitoring of moisture in transformer oil using optical fiber as sensor,” J. Photonics 2013, 1–7 (2013).
[Crossref]

Burgos, J. C.

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

Cao, J.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Cennamo, N.

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

Chen, Q. J.

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, X.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Chiangga, S.

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

Chow, D. M.

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Chu, P. K.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

Chu, S.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Cui, H.

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

D’Agostino, G.

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

De Maria, L.

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

Deng, J.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Dhasarathan, V.

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

Ding, J.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Dresselhaus, M. S.

L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47(19), 12727–12731 (1993).
[Crossref]

Duan, L.

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

Electronics, Q.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

El-Saeed, A. H.

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

García, B.

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

Grattan, K.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

Guang, J.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Gupta, B. J.

A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Habib, M. S.

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

Hai, N. H.

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

Haider, F.

Hameed, M. F. O.

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Han, X.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Han, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Hao, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Hasan, M. R.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Heikal, A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Hicks, L.

L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47(19), 12727–12731 (1993).
[Crossref]

Hossain, M. B.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Huang, S.

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

Huo, W.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Islam, M. H.

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

Islam, S. R.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

Jha, R.

A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Ji, W.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Khaleque, A.

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

Khalil, A. E.

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

Kuppusamy, P.

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

Laskar, S.

D. K. Mahanta and S. Laskar, “Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor,” IEEE Sens. J. 18(4), 1506–1512 (2018).
[Crossref]

S. Laskar and S. Bordoloi, “Monitoring of moisture in transformer oil using optical fiber as sensor,” J. Photonics 2013, 1–7 (2013).
[Crossref]

Li, C.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Li, S.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

Li, X.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Liu, C.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

Liu, M.

Liu, Q.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

Liu, W.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Liu, Y.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Lu, Y.

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

Luo, M.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Lv, J.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Mahanta, D. K.

D. K. Mahanta and S. Laskar, “Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor,” IEEE Sens. J. 18(4), 1506–1512 (2018).
[Crossref]

Mahdiraji, G.

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Maheswar, R.

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

Maheswaran, S.

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

Masson, J.-F.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

May, R.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Miroshnichenko, A.

Mollah, M. A.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Monfared, Y. E.

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

Morshed, M.

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

Mu, H.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

Ng, W. L.

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Obayya, S.

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Paul, A. K.

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

Paul, B. K.

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

Peng, W.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Pesavento, M. J. S.

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

Qian, S.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Rahman, A. B. S.

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

Rahman, M. M.

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

Rahman, M. S.

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

Raknoi, P.

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

Ramesh, S.

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

Ramya, K.

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

Rana, M. M.

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

Rana, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Rangel, N. L.

N. L. Rangel and J. M. Seminario, “Vibronics and plasmonics based graphene sensors,” J. Chem. Phys. 132(12), 125102 (2010).
[Crossref]

Rashed, A. N. Z.

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

Razzak, S. A.

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

Ren, Z.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Rifat, A.

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Rifat, A. A.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Sahu, S.

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

Sanz, J.

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

Sarkar, A. K.

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

Seminario, J. M.

N. L. Rangel and J. M. Seminario, “Vibronics and plasmonics based graphene sensors,” J. Chem. Phys. 132(12), 125102 (2010).
[Crossref]

Shao, Y.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Shee, Y.

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Shehata, R. E. A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Sheng, L.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Shum, P.

Singh, G.

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

Song, C.

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Sua, Y.

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Subbaraman, H.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Sun, J.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Sun, T.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

Sun, Y.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Sun, Z.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

Sundararajan, T.

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

Vasudevan, B.

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

Wang, A.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Wang, F.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

Wang, G.

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

Wang, H.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

Wang, J.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Wang, L.

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Wong, W. R.

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

Xia, L.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Xiao, H.

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Xu, X.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Yan, H. J. N.

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

Yan, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

Yang, L.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

Yang, X.

Yao, J.

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

Yasli, A.

A. Yasli and H. J. O. E. Ademgil, “Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors,” Opt. Eng. 57(03), 1 (2018).
[Crossref]

Yin, L.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Yousufali, M.

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Yuan, H.

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance,” Appl. Opt. 57(8), 1883–1886 (2018).
[Crossref]

Yuan, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Yupapin, P.

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

Yupapin, P. P.

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

Zeni, L.

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

Zhang, G.

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

Zhang, P.

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

Zhang, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

Zhang, Y.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

ACS Sens. (1)

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sens. 4(3), 704–710 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. J. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Wang, Y. Lu, L. Duan, and J. Yao, “A refractive index sensor based on PCF with ultra-wide detection range,” IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2021).
[Crossref]

IEEE Photonics J. (1)

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

K. Ramya, Y. E. Monfared, R. Maheswar, and V. Dhasarathan, “Dual-Core Twisted Photonic Crystal Fiber Salinity Sensor: A Numerical Investigation,” IEEE Photonics Technol. Lett. 32(10), 616–619 (2020).
[Crossref]

IEEE Sens. J. (4)

D. K. Mahanta and S. Laskar, “Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor,” IEEE Sens. J. 18(4), 1506–1512 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J. 18(14), 5761–5769 (2018).
[Crossref]

A. K. Sharma, R. Jha, and B. J. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

IEEE Trans. Power Delivery (1)

B. García, J. C. Burgos, Á.M. Alonso, and J. Sanz, “A moisture-in-oil model for power transformer monitoring-Part I: Theoretical foundation,” IEEE Trans. Power Delivery 20(2), 1417–1422 (2005).
[Crossref]

J. Chem. Phys. (1)

N. L. Rangel and J. M. Seminario, “Vibronics and plasmonics based graphene sensors,” J. Chem. Phys. 132(12), 125102 (2010).
[Crossref]

J. Photonics (1)

S. Laskar and S. Bordoloi, “Monitoring of moisture in transformer oil using optical fiber as sensor,” J. Photonics 2013, 1–7 (2013).
[Crossref]

Microsyst. Technol. (2)

P. Raknoi, S. Chiangga, I. Amiri, and P. Yupapin, “Array waveguide grating model for nanoparticle sensor applications,” Microsyst. Technol. 25(6), 2259–2265 (2019).
[Crossref]

S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol. 25(3), 789–795 (2019).
[Crossref]

Nanophotonics (1)

S. Huang, C. Song, G. Zhang, and H. J. N. Yan, “Graphene plasmonics: physics and potential applications,” Nanophotonics 6(6), 1191–1204 (2016).
[Crossref]

Nat. Phys. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance enhanced properties of noble metal nanoparticles and their applications to biosystems,” Nat. Phys. 2(3), 107–118 (2007).
[Crossref]

Opt. Appl. (1)

S. Sahu, J. Ali, and G. Singh, “Optimization of a dual-slot waveguide for a refractive index biosensor,” Opt. Appl. 48(1), 161–167 (2018).
[Crossref]

Opt. Commun. (2)

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

A. K. Paul, M. S. Habib, N. H. Hai, and S. A. Razzak, “An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing,” Opt. Commun. 464, 125556 (2020).
[Crossref]

Opt. Eng. (1)

A. Yasli and H. J. O. E. Ademgil, “Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors,” Opt. Eng. 57(03), 1 (2018).
[Crossref]

Opt. Laser Technol. (1)

J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, and Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33(5), 305–311 (2001).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

Q. Liu, J. Sun, Y. Sun, Z. Ren, C. Liu, J. Lv, F. Wang, L. Wang, W. Liu, and T. Sun, “Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film,” Opt. Mater. 102, 109800 (2020).
[Crossref]

Opt. Quantum Electron. (2)

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. Heikal, S. Obayya, and Q. Electronics, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Optik (2)

S. Sahu, J. Ali, P. P. Yupapin, and G. Singh, “Optical biosensor based on a cladding modulated grating waveguide,” Optik 166, 103–109 (2018).
[Crossref]

A. K. Paul, A. K. Sarkar, M. H. Islam, and M. Morshed, “Dual core photonic crystal fiber based surface plasmon resonance biosensor,” Optik 170, 400–408 (2018).
[Crossref]

Optoelectron. Lett. (1)

P. Zhang, J. Yao, H. Cui, and Y. Lu, “A surface plasmon resonance sensor based on a multi-core photonic crystal fiber,” Optoelectron. Lett. 9(5), 342–345 (2013).
[Crossref]

Phys. Rev. B (1)

L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47(19), 12727–12731 (1993).
[Crossref]

Plasmonics (4)

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

W. L. Ng, A. A. Rifat, W. R. Wong, G. Mahdiraji, and F. M. Adikan, “A novel diamond ring fiber-based surface plasmon resonance sensor,” Plasmonics 13(4), 1165–1170 (2018).
[Crossref]

F. Wang, Z. Sun, C. Liu, T. Sun, and P. K. Chu, “A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer,” Plasmonics 12(6), 1847–1853 (2017).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection,” Plasmonics 13(3), 779–784 (2018).
[Crossref]

Proc. SPIE (1)

A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. Obayya, “Bimetallic surface plasmon resonance photonic crystal fiber biosensor using refractory plasmonic material,” Proc. SPIE 10912, 1091213 (2019).
[Crossref]

Results Phys. (3)

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, “Refractive index sensor using dual core photonic crystal fiber–glucose detection applications,” Results Phys. 11, 577–578 (2018).
[Crossref]

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, “Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application,” Results Phys. 12, 2021–2025 (2019).
[Crossref]

M. A. Mollah, S. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys. 16, 102966 (2020).
[Crossref]

Sens. Actuators, B (1)

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, and X. Xu, “New sensor for gases dissolved in transformer oil based on solid oxide fuel cell,” Sens. Actuators, B 202, 232–239 (2014).
[Crossref]

Sensors (2)

N. Cennamo, L. De Maria, G. D’Agostino, L. Zeni, and M. J. S. Pesavento, “Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform,” Sensors 15(4), 8499–8511 (2015).
[Crossref]

H. Wang, X. Yan, S. Li, G. An, and X. Zhang, “High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice,” Sensors 16(10), 1655 (2016).
[Crossref]

SN Appl. Sci. (1)

M. M. Rahman, M. M. Rana, M. Anower, M. S. Rahman, and A. K. Paul, “Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme,” SN Appl. Sci. 2(7), 1194 (2020).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Cross sectional view of proposed PCF based SPR sensor for moisture monitoring of the transformer oil having air-holes, fused silica, analyte, graphene layer, and PML; (b) general set-up for practical sensing.
Fig. 2.
Fig. 2. A plot of loss and real part of effective RI versus wavelength (dispersion relation between core and SPP mode) for analyte RI of 1.337.
Fig. 3.
Fig. 3. Optical field distribution profile for analyte RI of 1.337 at the wavelength of 0.562 µm; Fundamental mode for (a) x- and (b) y-polarization; SPP mode for (c) x- and (d) y-polarization.
Fig. 4.
Fig. 4. A plot of loss spectra versus wavelength for the analyte RI variation of 1.330 to 1.340 for (a) x- and (b) y-polarized modes; 2D normalized loss intensity plot as a function of wavelength and analyte RI, ranging from 1.330-1.340 for (c) x- and (d) y-polarized modes.
Fig. 5.
Fig. 5. Amplitude sensitivity of the proposed SPR moisture monitoring sensor with respective to wavelength variation for analyte RI ranging from 1.330 to 1.340 having d = 0.76 µm, dc = 0.3 µm, Λ = 0.8 µm, tg = 40.12 nm for (a) x- and (b) y-polarized modes.

Tables (1)

Tables Icon

Table 1. Comparison among the proposed SPR RI sensor in a PCF platform and other PCF SPR sensors in the literature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α=8.686×ko.Im[neff]×104
Sλ=λRna
SA=[1/α(λ,na)]×[Δα(λ,na)]/Δna
FOM=SλFWHM
SL=1α(λ,na).

Metrics