Abstract

In this paper, we present a theoretical and experimental analysis on the properties of rectangular core fibers. We investigate the single-mode regime and the bending properties with respect to the aspect ratio of the rectangular core. In comparison to a standard step-index single-mode fiber, we show that a passive single-mode rectangular core fiber with an aspect ratio of ten is able to transport two times more power without the occurrence of nonlinear effects. For actively doped fibers, the threshold of nonlinear effects can be raised by up to 15%. For experimental verification a rectangular core fiber with an aspect ratio of three is manufactured and analysed. Here, the results between the numerical simulation and the experimental analysis are in agreement.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear fiber optics, 4th ed. Elsevier / Academic Press, Amsterdam, Boston, 2007.
  2. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref]
  3. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  4. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  5. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
    [Crossref]
  6. X. Zhang, S. Gao, Y. Wang, W. Ding, X. Wang, and P. Wang, “7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss,” Opt. Express 27(8), 11608–11616 (2019).
    [Crossref]
  7. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [Crossref]
  8. C. Holly, Modeling of the Lateral Emission Characteristics of High-Power Edge-Emitting Semiconductor Lasers, 1st ed. Shaker, Düren, 2019.
  9. R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  10. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  11. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216 (1976).
    [Crossref]

2019 (1)

2012 (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

2011 (2)

2007 (1)

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

2000 (1)

1977 (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

1976 (1)

1971 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics, 4th ed. Elsevier / Academic Press, Amsterdam, Boston, 2007.

Alkeskjold, T. T.

Broeng, J.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Ding, W.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Gao, S.

Gloge, D.

Goldberg, L.

Holly, C.

C. Holly, Modeling of the Lateral Emission Characteristics of High-Power Edge-Emitting Semiconductor Lasers, 1st ed. Shaker, Düren, 2019.

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jauregui, C.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Kliner, D. A.

Koplow, J. P.

Laurila, M.

Limpert, J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216 (1976).
[Crossref]

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Scolari, L.

Smith, A. V.

Smith, J. J.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Tünnermann, A.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Wang, P.

Wang, X.

Wang, Y.

Zhang, X.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Light: Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Nonlinear fiber optics, 4th ed. Elsevier / Academic Press, Amsterdam, Boston, 2007.

C. Holly, Modeling of the Lateral Emission Characteristics of High-Power Edge-Emitting Semiconductor Lasers, 1st ed. Shaker, Düren, 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Exemplary normalized refractive index profile and cross section of a rectangular core fiber
Fig. 2.
Fig. 2. Effective refractive indices of the $L{P_{11}}$-like higher order modes with respect to the aspect ratio and the core area
Fig. 3.
Fig. 3. Core area, mode field area and the normalized mode power with respect to the aspect ratio of single-mode rectangular core fibers
Fig. 4.
Fig. 4. Mode field area and normalized mode power of a round-core single-mode fiber and the calculated rectangular core single-mode fibers for different aspect ratios and the corresponding normalized frequency of a round fiber with respect to the core area
Fig. 5.
Fig. 5. Core area, mode field area and the normalized nonlinear threshold with respect to the aspect ratio of actively doped, single-mode rectangular core fibers
Fig. 6.
Fig. 6. Bending loss of simulated rectangular core single-mode fibers for different aspect ratios with respect to the bending radius
Fig. 7.
Fig. 7. Measured cleaved facet of the manufactured fiber
Fig. 8.
Fig. 8. Measured near-field and far-field profile of the manufactured fiber
Fig. 9.
Fig. 9. Measured beam diameter characteristic for the calculation of the beam quality factor
Fig. 10.
Fig. 10. Experimental setup for the measurement of the bending characteristic of the manufactured fiber
Fig. 11.
Fig. 11. Measured bending loss with respect to the bending radius and corresponding simulation results for the manufactured fiber

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nClad<neff,lm<nCore,
MFD=dk(0.65+1.619V1.5+2.879V6),
V=dkπλNA,
PTh,nonlinearAeffLeffAeffACore.

Metrics