Abstract

Compact and robust ion traps for thorium are enabling technology for the next generation of atomic clocks based on a low-energy isomeric transition in the thorium-229 nucleus. We aim at a laser ablation loading of single triply ionized thorium in a radio-frequency electromagnetic linear Paul trap. Detection of ions is based on a modified mass spectrometer and a channeltron with single-ion sensitivity. In this study, we successfully created and detected 232Th+ and 232Th2+ ions from plasma plumes, studied their yield evolution, and compared the loading to a quadrupole ion trap with Yb. We explore the feasibility of laser ablation loading for future low-cost 229Th3+ trapping. The thorium ablation yield shows a strong depletion, suggesting that we have ablated oxide layers from the surface and the ions were a result of the plasma plume evolution and collisions. Our results are in good agreement with similar experiments for other elements and their oxides.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient isotope-selective pulsed laser ablation loading of 174Yb+ ions in a surface electrode trap

Geert Vrijsen, Yuhi Aikyo, Robert F. Spivey, I. Volkan Inlek, and Jungsang Kim
Opt. Express 27(23) 33907-33914 (2019)

Absolute frequency measurements of the 1S0 → 1P1  transition in ytterbium

Thomas Lauprêtre, Lucas Groult, Bachir Achi, Michael Petersen, Yann Kersalé, Marion Delehaye, and Clément Lacroûte
OSA Continuum 3(1) 50-57 (2020)

References

  • View by:
  • |
  • |
  • |

  1. M. Vermeer, Chronometric Levelling, Reports of the Finnish Geodetic Institute (Geodeettinen Laitos, Geodetiska Institutet, 1983).
  2. T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
    [Crossref]
  3. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
    [Crossref]
  4. C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
    [Crossref]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
    [Crossref]
  6. P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
    [Crossref]
  7. J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
    [Crossref]
  8. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
    [Crossref]
  9. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
    [Crossref]
  10. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
    [Crossref]
  11. S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
    [Crossref]
  12. S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
    [Crossref]
  13. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
    [Crossref]
  14. B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
    [Crossref]
  15. B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.
  16. B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
    [Crossref]
  17. A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
    [Crossref]
  18. T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).
  19. L. Kroger and C. Reich, “Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U,” Nucl. Phys. A 259(1), 29–60 (1976).
    [Crossref]
  20. W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
    [Crossref]
  21. S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
    [Crossref]
  22. L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
    [Crossref]
  23. M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
    [Crossref]
  24. P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
    [Crossref]
  25. T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
    [Crossref]
  26. P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
    [Crossref]
  27. L. von der Wense and C. Zhang, “Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock,” Eur. Phys. J. D 74(7), 146 (2020).
    [Crossref]
  28. S. G. Porsev and V. V. Flambaum, “Effect of atomic electrons on the 7.6-eV nuclear transition in Th2293 +,” Phys. Rev. A 81(3), 032504 (2010).
    [Crossref]
  29. P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
    [Crossref]
  30. E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61(2), 181–186 (2003).
    [Crossref]
  31. C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
    [Crossref]
  32. M. Delehaye and C. Lacroûte, “Single-ion, transportable optical atomic clocks,” J. Mod. Opt. 65(5-6), 622–639 (2018).
    [Crossref]
  33. E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
    [Crossref]
  34. V. V. Flambaum, “Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th,” Phys. Rev. Lett. 97(9), 092502 (2006).
    [Crossref]
  35. J. C. Berengut and V. V. Flambaum, “Testing time-variation of fundamental constants using a 229Th nuclear clock,” Nucl. Phys. News 20(3), 19–22 (2010).
    [Crossref]
  36. P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
    [Crossref]
  37. C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
    [Crossref]
  38. C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
    [Crossref]
  39. K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
    [Crossref]
  40. P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
    [Crossref]
  41. P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
    [Crossref]
  42. O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
    [Crossref]
  43. O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
    [Crossref]
  44. J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
    [Crossref]
  45. V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
    [Crossref]
  46. E. Streed, “Unfolding large biomolecules,” Proceedings of the 2012 Australian Institute of Physics Congress (2012).
  47. P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
    [Crossref]
  48. R. D. Knight, “Storage of ions from laser produced plasmas,” Appl. Phys. Lett. 38(4), 221–223 (1981).
    [Crossref]
  49. S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions,” Appl. Phys. B 123(4), 99 (2017).
    [Crossref]
  50. R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
    [Crossref]
  51. J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
    [Crossref]
  52. G. Vrijsen, Y. Aikyo, R. F. Spivey, I. V. Inlek, and J. Kim, “Efficient isotope-selective pulsed laser ablation loading of 174Yb+ ions in a surface electrode trap,” Opt. Express 27(23), 33907–33914 (2019).
    [Crossref]
  53. K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
    [Crossref]
  54. D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
    [Crossref]
  55. K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
    [Crossref]
  56. V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
    [Crossref]
  57. W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
    [Crossref]
  58. D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31(6), 757–759 (2006).
    [Crossref]
  59. E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
    [Crossref]
  60. O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
    [Crossref]
  61. Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
    [Crossref]
  62. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  63. K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
    [Crossref]
  64. K. Zimmermann, “Experiments towards optical nuclear spectroscopy with Thorium-229,” Ph.D. thesis, Leibniz U., Hannover (2010).
  65. C. J. Campbell, “Trapping, laser cooling, and spectroscopy of Thorium IV,” Ph.D. thesis, Georgia Institute of Technology (2011).
  66. L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
    [Crossref]

2020 (3)

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

L. von der Wense and C. Zhang, “Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock,” Eur. Phys. J. D 74(7), 146 (2020).
[Crossref]

2019 (9)

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
[Crossref]

G. Vrijsen, Y. Aikyo, R. F. Spivey, I. V. Inlek, and J. Kim, “Efficient isotope-selective pulsed laser ablation loading of 174Yb+ ions in a surface electrode trap,” Opt. Express 27(23), 33907–33914 (2019).
[Crossref]

2018 (7)

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

M. Delehaye and C. Lacroûte, “Single-ion, transportable optical atomic clocks,” J. Mod. Opt. 65(5-6), 622–639 (2018).
[Crossref]

P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
[Crossref]

2017 (7)

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions,” Appl. Phys. B 123(4), 99 (2017).
[Crossref]

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

2016 (2)

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

2015 (1)

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

2013 (3)

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

2012 (5)

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
[Crossref]

2011 (3)

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
[Crossref]

K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
[Crossref]

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

2010 (5)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

J. C. Berengut and V. V. Flambaum, “Testing time-variation of fundamental constants using a 229Th nuclear clock,” Nucl. Phys. News 20(3), 19–22 (2010).
[Crossref]

S. G. Porsev and V. V. Flambaum, “Effect of atomic electrons on the 7.6-eV nuclear transition in Th2293 +,” Phys. Rev. A 81(3), 032504 (2010).
[Crossref]

2009 (1)

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

2008 (1)

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
[Crossref]

2007 (3)

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

2006 (3)

V. V. Flambaum, “Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th,” Phys. Rev. Lett. 97(9), 092502 (2006).
[Crossref]

D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31(6), 757–759 (2006).
[Crossref]

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

2004 (1)

L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
[Crossref]

2003 (1)

E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61(2), 181–186 (2003).
[Crossref]

2000 (1)

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

1990 (1)

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

1981 (1)

R. D. Knight, “Storage of ions from laser produced plasmas,” Appl. Phys. Lett. 38(4), 221–223 (1981).
[Crossref]

1976 (1)

L. Kroger and C. Reich, “Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U,” Nucl. Phys. A 259(1), 29–60 (1976).
[Crossref]

Abgrall, M.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Aikyo, Y.

Akatsuka, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Al-Masoudi, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Amersdorffer, I.

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

Amy-Klein, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
[Crossref]

Antohi, P.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Bakr, W.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Barbieri, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Baynes, F. N.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Beck, B. R.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Becker, J. A.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Becker, P.

S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions,” Appl. Phys. B 123(4), 99 (2017).
[Crossref]

Beeks, K.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Begy, R. C.

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Beiersdorfer, P.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Bekker, H.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

Beloy, K.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Berengut, J. C.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

J. C. Berengut and V. V. Flambaum, “Testing time-variation of fundamental constants using a 229Th nuclear clock,” Nucl. Phys. News 20(3), 19–22 (2010).
[Crossref]

Bilicki, S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Bilous, P. V.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
[Crossref]

Blank, D. H. A.

L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
[Crossref]

Blums, V.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Bobos, L. D.

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Bookjans, E.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Borisyuk, P. V.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Bowden, W.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Bregolin, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Brewer, S. M.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

Brown, G. V.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Brown, K. R.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Brown, R. C.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Budker, D.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Calonico, D.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Camisard, E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Campbell, C. J.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
[Crossref]

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

C. J. Campbell, “Trapping, laser cooling, and spectroscopy of Thorium IV,” Ph.D. thesis, Georgia Institute of Technology (2011).

Cao, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Cetina, M.

Chanteau, B.

Chao, S.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Chapman, M. S.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Chardonnet, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
[Crossref]

Chen, J.-S.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Chiodo, N.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Chou, C. W.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Chrysalidis, K.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Chuang, I. L.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Churchill, L. R.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Clark, R. J.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Clements, E. R.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

Clivati, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Connell, S. C.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Coq, Y. L.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Correia, J. G.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Cosma, C.

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Costanzo, G. A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Cottenier, S.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Cox, J. A.

Cui, K.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Dantan, A.

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

De Witte, H.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Delehaye, M.

M. Delehaye and C. Lacroûte, “Single-ion, transportable optical atomic clocks,” J. Mod. Opt. 65(5-6), 622–639 (2018).
[Crossref]

Delva, P.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Demille, D.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Denker, H.

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

DePalatis, M. V.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Derevianko, A.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

Derevyashkin, S. P.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

Doeswijk, L. M.

L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
[Crossref]

Dörscher, S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Drewsen, M.

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Düllmann, C. E.

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Dumitru, O. A.

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Dzuba, V. A.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

Enss, C.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Fasano, R. J.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Fedorov, D. V.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Fedosseev, V. N.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Ferrer, R.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Flambaum, V. V.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

S. G. Porsev and V. V. Flambaum, “Effect of atomic electrons on the 7.6-eV nuclear transition in Th2293 +,” Phys. Rev. A 81(3), 032504 (2010).
[Crossref]

J. C. Berengut and V. V. Flambaum, “Testing time-variation of fundamental constants using a 229Th nuclear clock,” Nucl. Phys. News 20(3), 19–22 (2010).
[Crossref]

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

V. V. Flambaum, “Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th,” Phys. Rev. Lett. 97(9), 092502 (2006).
[Crossref]

Fleischmann, A.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Fraile, L. M.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Fujieda, A.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Fujimoto, H.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Fukushima, Y.

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

Gastaldo, L.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Geist, J.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Geldhof, S.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Gensemer, S.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Gill, P.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Glowacki, P.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

Granados, C. A.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Grant, D. M.

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

Grebing, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Greco, R. R.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Groot-Berning, K.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Grosche, G.

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Grotti, J.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Guerlin, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Haas, R.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Haba, H.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Haboucha, A.

Häfner, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Hankin, A. M.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Hara, H.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Hasegawa, S.

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

Hashimoto, Y.

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

Hayashi, T.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Hehlen, M. P.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Hendricks, R. J.

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

Hengstler, D.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Herrera-Sancho, O. A.

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

Herskind, P. F.

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

Hill, I. R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Hinkley, N.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Hiraki, T.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Hobson, R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Huang, X.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Huber, J. R.

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[Crossref]

Hudson, E. R.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Hume, D. B.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Hussain, M. I.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Inlek, I. V.

Jacob, G.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Kaino, H.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Kärtner, F. X.

Kasamatsu, Y.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Katori, H.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Kazakov, G.

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Keller, M.

K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
[Crossref]

Kelley, R. L.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Kempf, S.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Khabarova, K. Y.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

Khalitov, R. R.

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Kielpinski, D.

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
[Crossref]

D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31(6), 757–759 (2006).
[Crossref]

Kikunaga, H.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Kilbourne, C. A.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Kim, J.

Kitao, S.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Knight, R. D.

R. D. Knight, “Storage of ions from laser produced plasmas,” Appl. Phys. Lett. 38(4), 221–223 (1981).
[Crossref]

Koczwara, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Kokado, K.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

Koke, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Kolachevsky, N. N.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

Koller, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Konashi, K.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Kraemer, S.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Krasavin, A. V.

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Kroger, L.

L. Kroger and C. Reich, “Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U,” Nucl. Phys. A 259(1), 29–60 (1976).
[Crossref]

Kronjäger, J.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Kuhl, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Kuroishi, Y.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Kuzmich, A.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
[Crossref]

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Laatiaoui, M.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Labaziewicz, J.

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Lacroûte, C.

M. Delehaye and C. Lacroûte, “Single-ion, transportable optical atomic clocks,” J. Mod. Opt. 65(5-6), 622–639 (2018).
[Crossref]

Lange, W.

K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
[Crossref]

Le Poncin-Lafitte, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Le Targat, R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Lebedinskii, Y. Y.

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Lebedinsky, Y. Y.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

Lee, W.-K.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Legero, T.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Leibrandt, D. R.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

Leitz, K.-H.

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Lemell, C.

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

Levi, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Libisch, F.

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

Lima, T. A.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Lin, P. C.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Lisdat, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Lobino, M.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Lodewyck, J.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Lopez, O.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
[Crossref]

López-Urrutia, J. R.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

Lours, M.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Ludlow, A. D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Maehata, K.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Manea, V.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Margolis, H. S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Marra, G.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Marsh, B. A.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Masuda, T.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Matsukevich, D. N.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Matsuoka, L.

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

McGrew, W. F.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Mehlstäubler, T. E.

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

Meier, D. M.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

Meynadier, F.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Milani, G.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Minkov, N.

P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
[Crossref]

Mitsuda, K.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Miyahara, B.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Miyamoto, Y.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Moens, J.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Mokry, C.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Moody, K. J.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Moore, I.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Munekane, H.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Muramatsu, H.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Nakamura, K.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Naylor, D. E.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Nemitz, N.

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

Nicolodi, D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Nita, D. C.

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Norton, B. G.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Ohmae, N.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Okai, K.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Okhapkin, M.

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

Okhapkin, M. V.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

Okubo, S.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Olmschenk, S.

S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions,” Appl. Phys. B 123(4), 99 (2017).
[Crossref]

Osaki, H.

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

Otto, A.

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Palchikov, V. G.

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Pálffy, A.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Paul, W.

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

Peik, E.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61(2), 181–186 (2003).
[Crossref]

Pereira, L. M.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Pfeifer, T.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

Piotrowski, M.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Pizzocaro, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Porsev, S. G.

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

S. G. Porsev and V. V. Flambaum, “Effect of atomic electrons on the 7.6-eV nuclear transition in Th2293 +,” Phys. Rev. A 81(3), 032504 (2010).
[Crossref]

Porter, F. S.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Poteshin, S. S.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Pottie, P.-E.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Quintin, N.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Radnaev, A. G.

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
[Crossref]

Raeder, S.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Rauf, B.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Raupach, S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Raupach, S. M. F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Redlingshofer, B.

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Reg, Y.

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Reich, C.

L. Kroger and C. Reich, “Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U,” Nucl. Phys. A 259(1), 29–60 (1976).
[Crossref]

Rellergert, W. G.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Renisch, D.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Rijnders, G.

L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
[Crossref]

Robyr, J.-L.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Rolland, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Rosecker, V.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Rosenband, T.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Runke, J.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Santarelli, G.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
[Crossref]

Sasao, N.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Schäffer, S. A.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Schioppo, M.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Schmidt, M.

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Schmidt, P. O.

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

Schmidt-Kaler, F.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Schnatz, H.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Schumm, T.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Seiferle, B.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Seto, M.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Shang, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Sheridan, K.

K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
[Crossref]

Shi, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Shigekawa, Y.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Shinkai, H.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

Shu, H.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Sikorsky, T.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Spivey, R. F.

Steele, A. V.

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

Stefani, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Stellmer, S.

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Sterba, J. H.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Sterr, U.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Stopp, F.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Streed, E.

E. Streed, “Unfolding large biomolecules,” Proceedings of the 2012 Australian Institute of Physics Congress (2012).

Streed, E. W.

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
[Crossref]

Suzuki, K.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Sysoev, A. A.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Taichenachev, A. V.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

Takamoto, M.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Takano, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Takimoto, M.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Tamasaku, K.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Tamm, C.

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61(2), 181–186 (2003).
[Crossref]

Tampellini, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Targat, R. L.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Thielking, J.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

Thirolf, P. G.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Thörle-Pospiech, P.

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

Thoumany, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Timmen, L.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Tkalya, E. V.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

Tolstikhina, I. Y.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

Torgerson, J. R.

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

Tregubov, D. O.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

Troyan, V. I.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Udem, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Uetake, S.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Ushijima, I.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

v. d. Wense, L.

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

Vallet, G.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Van Den Bergh, P.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Van Duppen, P.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Vantomme, A.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Vasiliev, O. S.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

Verlinde, M.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Vermeer, M.

M. Vermeer, Chronometric Levelling, Reports of the Finnish Geodetic Institute (Geodeettinen Laitos, Geodetiska Institutet, 1983).

Verstraelen, E.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Vogt, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

Voigt, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Von Der Wense, L.

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

L. von der Wense and C. Zhang, “Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock,” Eur. Phys. J. D 74(7), 146 (2020).
[Crossref]

P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Vrijsen, G.

Wahl, U.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Wang, S.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Watanabe, M.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Watanabe, T.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Weinhold, T. J.

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
[Crossref]

Weitenberg, J.

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

Wilhelmy, J. B.

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Wilkins, S. G.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

Willmott, P. R.

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[Crossref]

Wineland, D. J.

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Wiotte, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Wobrauschek, P.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

Wu, C.

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

Yahagi, T.

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

Yakovlev, V. P.

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Yamaguchi, A.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Yamasaki, N. Y.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Yasuda, Y.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yoda, Y.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yokokita, T.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yoon, T. H.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Yoshimi, A.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yoshimura, K.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yoshimura, M.

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

Yuan, J.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Yuasa, N.

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

Yudin, V. I.

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

Zampaolo, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Zhang, C.

L. von der Wense and C. Zhang, “Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock,” Eur. Phys. J. D 74(7), 146 (2020).
[Crossref]

Zhang, P.

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

Zhang, X.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Zimmermann, K.

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

K. Zimmermann, “Experiments towards optical nuclear spectroscopy with Thorium-229,” Ph.D. thesis, Leibniz U., Hannover (2010).

Zucco, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Ann. Phys. (1)

P. G. Thirolf, B. Seiferle, and L. von der Wense, “Improving our knowledge on the 229mThorium isomer: Toward a test bench for time variations of fundamental constants,” Ann. Phys. 531(5), 1800381 (2019).
[Crossref]

Appl. Phys. A (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, “Pulsed laser deposition: metal versus oxide ablation,” Appl. Phys. A 78(3), 263–268 (2004).
[Crossref]

Appl. Phys. B (5)

S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions,” Appl. Phys. B 123(4), 99 (2017).
[Crossref]

R. J. Hendricks, D. M. Grant, P. F. Herskind, A. Dantan, and M. Drewsen, “An all-optical ion-loading technique for scalable microtrap architectures,” Appl. Phys. B 88(4), 507–513 (2007).
[Crossref]

J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang, “A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty,” Appl. Phys. B 123(4), 112 (2017).
[Crossref]

K. Sheridan, W. Lange, and M. Keller, “All-optical ion generation for ion trap loading,” Appl. Phys. B 104(4), 755–761 (2011).
[Crossref]

K. Zimmermann, M. V. Okhapkin, O. A. Herrera-Sancho, and E. Peik, “Laser ablation loading of a radiofrequency ion trap,” Appl. Phys. B 107(4), 883–889 (2012).
[Crossref]

Appl. Phys. Lett. (2)

R. D. Knight, “Storage of ions from laser produced plasmas,” Appl. Phys. Lett. 38(4), 221–223 (1981).
[Crossref]

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93(7), 071103 (2008).
[Crossref]

C. R. Phys. (1)

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

Eur. J. Mass Spectrom. (2)

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application,” Eur. J. Mass Spectrom. 23(4), 146–151 (2017).
[Crossref]

P. V. Borisyuk, S. P. Derevyashkin, K. Y. Khabarova, N. N. Kolachevsky, Y. Y. Lebedinsky, S. S. Poteshin, A. A. Sysoev, E. V. Tkalya, D. O. Tregubov, V. I. Troyan, O. S. Vasiliev, V. P. Yakovlev, and V. I. Yudin, “Mass selective laser cooling of 229Th3+ in a multisectional linear Paul trap loaded with a mixture of thorium isotopes,” Eur. J. Mass Spectrom. 23(4), 136–139 (2017).
[Crossref]

Eur. Phys. J. D (1)

L. von der Wense and C. Zhang, “Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock,” Eur. Phys. J. D 74(7), 146 (2020).
[Crossref]

Europhys. Lett. (1)

E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61(2), 181–186 (2003).
[Crossref]

J. Mod. Opt. (1)

M. Delehaye and C. Lacroûte, “Single-ion, transportable optical atomic clocks,” J. Mod. Opt. 65(5-6), 622–639 (2018).
[Crossref]

J. Radioanal. Nucl. Chem. (1)

O. A. Dumitru, R. C. Begy, D. C. Nita, L. D. Bobos, and C. Cosma, “Uranium electrodeposition for alpha spectrometric source preparation,” J. Radioanal. Nucl. Chem. 298(2), 1335–1339 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, and S. Hasegawa, “Trapping Laser Ablated Ca+ Ions in Linear Paul Trap,” Jpn. J. Appl. Phys. 45(9A), 7108–7113 (2006).
[Crossref]

Laser Phys. Lett. (1)

V. I. Troyan, P. V. Borisyuk, R. R. Khalitov, A. V. Krasavin, Y. Y. Lebedinskii, V. G. Palchikov, S. S. Poteshin, A. A. Sysoev, and V. P. Yakovlev, “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett. 10(10), 105301 (2013).
[Crossref]

Nat. Commun. (1)

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. L. Coq, G. Santarelli, A. Amy-Klein, R. L. Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Nat. Photonics (2)

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, “Test of general relativity by a pair of transportable optical lattice clocks,” Nat. Photonics 14(7), 411–415 (2020).
[Crossref]

Nat. Phys. (1)

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Nature (4)

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao, K. Konashi, Y. Miyamoto, K. Okai, S. Okubo, N. Sasao, M. Seto, T. Schumm, Y. Shigekawa, K. Suzuki, S. Stellmer, K. Tamasaku, S. Uetake, M. Watanabe, T. Watanabe, Y. Yasuda, A. Yamaguchi, Y. Yoda, T. Yokokita, M. Yoshimura, and K. Yoshimura, “X-ray pumping of the 229Th nuclear clock isomer,” Nature 573(7773), 238–242 (2019).
[Crossref]

B. Seiferle, L. von der Wense, P. V. Bilous, I. Amersdorffer, C. Lemell, F. Libisch, S. Stellmer, T. Schumm, C. E. Düllmann, A. Pálffy, and P. G. Thirolf, “Energy of the 229Th nuclear clock transition,” Nature 573(7773), 243–246 (2019).
[Crossref]

J. Thielking, M. V. Okhapkin, P. Głowacki, D. M. Meier, L. v. d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, and E. Peik, “Laser spectroscopic characterization of the nuclear-clock isomer 229mTh,” Nature 556(7701), 321–325 (2018).
[Crossref]

Nucl. Phys. A (1)

L. Kroger and C. Reich, “Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U,” Nucl. Phys. A 259(1), 29–60 (1976).
[Crossref]

Nucl. Phys. News (1)

J. C. Berengut and V. V. Flambaum, “Testing time-variation of fundamental constants using a 229Th nuclear clock,” Nucl. Phys. News 20(3), 19–22 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Procedia (1)

K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, and M. Schmidt, “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Phys. Rev. A (5)

D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R. Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion trap,” Phys. Rev. A 76(5), 055403 (2007).
[Crossref]

K. Groot-Berning, F. Stopp, G. Jacob, D. Budker, R. Haas, D. Renisch, J. Runke, P. Thörle-Pospiech, C. E. Düllmann, and F. Schmidt-Kaler, “Trapping and sympathetic cooling of single thorium ions for spectroscopy,” Phys. Rev. A 99(2), 023420 (2019).
[Crossref]

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 ev,” Phys. Rev. A 88(1), 012512 (2013).
[Crossref]

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, C. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki, “Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line,” Phys. Rev. A 85(3), 033402 (2012).
[Crossref]

S. G. Porsev and V. V. Flambaum, “Effect of atomic electrons on the 7.6-eV nuclear transition in Th2293 +,” Phys. Rev. A 81(3), 032504 (2010).
[Crossref]

Phys. Rev. C (3)

P. V. Bilous, N. Minkov, and A. Pálffy, “Electric quadrupole channel of the 7.8 eV Th 229 transition,” Phys. Rev. C 97(4), 044320 (2018).
[Crossref]

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier, H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geldhof, C. A. Granados, M. Laatiaoui, T. A. Lima, P. C. Lin, V. Manea, B. A. Marsh, I. Moore, L. M. Pereira, S. Raeder, P. Van Den Bergh, P. Van Duppen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative approach to populate and study the Th 229 nuclear clock isomer,” Phys. Rev. C 100(2), 024315 (2019).
[Crossref]

P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Y. Tolstikhina, and V. I. Yudin, “Excitation of the low-energy 229mTh isomer in the electron bridge process via the continuum,” Phys. Rev. C 100(4), 044306 (2019).
[Crossref]

Phys. Rev. Lett. (13)

A. Yamaguchi, H. Muramatsu, T. Hayashi, N. Yuasa, K. Nakamura, M. Takimoto, H. Haba, K. Konashi, M. Watanabe, H. Kikunaga, K. Maehata, N. Y. Yamasaki, and K. Mitsuda, “Energy of the 229Th nuclear clock isomer determined by absolute ${\gamma }$γ-ray energy difference,” Phys. Rev. Lett. 123(22), 222501 (2019).
[Crossref]

P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. Von Der Wense, P. G. Thirolf, T. Pfeifer, J. R. López-Urrutia, and A. Pálffy, “Electronic Bridge Excitation in Highly Charged Th 229 Ions,” Phys. Rev. Lett. 124(19), 192502 (2020).
[Crossref]

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett. 102(23), 233004 (2009).
[Crossref]

C. J. Campbell, A. G. Radnaev, and A. Kuzmich, “Wigner crystals of Th229 for optical excitation of the nuclear isomer,” Phys. Rev. Lett. 106(22), 223001 (2011).
[Crossref]

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place,” Phys. Rev. Lett. 108(12), 120802 (2012).
[Crossref]

V. V. Flambaum, “Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th,” Phys. Rev. Lett. 97(9), 092502 (2006).
[Crossref]

S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below ${10}^{-18}$10−18,” Phys. Rev. Lett. 123(3), 033201 (2019).
[Crossref]

S. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, “Transportable optical lattice clock with $7 \times {10}^{-17}$7×10−17 uncertainty,” Phys. Rev. Lett. 118(7), 073601 (2017).
[Crossref]

B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett. 98(14), 142501 (2007).
[Crossref]

W. G. Rellergert, D. Demille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus,” Phys. Rev. Lett. 104(20), 200802 (2010).
[Crossref]

S. G. Porsev, V. V. Flambaum, E. Peik, and C. Tamm, “Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+,” Phys. Rev. Lett. 105(18), 182501 (2010).
[Crossref]

L. Von Der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Pálffy, and P. G. Thirolf, “A Laser Excitation Scheme for 229mTh,” Phys. Rev. Lett. 119(13), 132503 (2017).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Rep. Prog. Phys. (1)

T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt, and H. Denker, “Atomic clocks for geodesy,” Rep. Prog. Phys. 81(6), 064401 (2018).
[Crossref]

Rev. Mod. Phys. (2)

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[Crossref]

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62(3), 531–540 (1990).
[Crossref]

Sci. Adv. (1)

V. Blums, M. Piotrowski, M. I. Hussain, B. G. Norton, S. C. Connell, S. Gensemer, M. Lobino, and E. W. Streed, “A single-atom 3d sub-attonewton force sensor,” Sci. Adv. 4(3), eaao4453 (2018).
[Crossref]

Science (2)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical Clocks and Relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Other (6)

M. Vermeer, Chronometric Levelling, Reports of the Finnish Geodetic Institute (Geodeettinen Laitos, Geodetiska Institutet, 1983).

B. R. Beck, C. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh,” (2009), LLNL-PROC-415170.

T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic micro-calorimeter,” https://arxiv.org/abs/2005.13340 (2020).

E. Streed, “Unfolding large biomolecules,” Proceedings of the 2012 Australian Institute of Physics Congress (2012).

K. Zimmermann, “Experiments towards optical nuclear spectroscopy with Thorium-229,” Ph.D. thesis, Leibniz U., Hannover (2010).

C. J. Campbell, “Trapping, laser cooling, and spectroscopy of Thorium IV,” Ph.D. thesis, Georgia Institute of Technology (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A rendering of the experimental setup. The ion trap is placed inside the central vacuum chamber. The port on the left of the chamber leads to the RGA based ion detection system. The axis of the ion trap is aligned with the axis of the RGA’s mass filter rods. The port on the right-hand side connects to the vacuum control and detection system. Top and bottom 4.5-inch ports and front smaller port are closed with windows for optical access. The rear smaller port serves for electrical connection to the ion trap.
Fig. 2.
Fig. 2. A schematic illustrating the relative positions of the laser plasma creation, the ion trap, and RGA based ions detector with the channeltron. The ions created in the ablation process travel along the path marked towards the detector.
Fig. 3.
Fig. 3. Example of the ion current detected in the channeltron as a function of time (green lines). The repetition rate of the ablation laser is 1 Hz, the ion trap driving frequency 6.24 MHz, ion signal data points were averaged over 500ms. The blue line is a fit with periodic signal $\mathrm {sin}^2(2\pi f+\phi )$ with frequency $2\pi f=198$ mHz corresponding to the beat frequency between ablation and trap frequency.
Fig. 4.
Fig. 4. Comparison of the Yb mass spectrum detected in the RGA with the natural isotope abundance of Yb.
Fig. 5.
Fig. 5. A signal confirming successful creation and RF-trap loading of (a) Yb$^+$ and (b) Th$^+$ and Th$^{2+}$ ions using our laser ablation method and detection scheme. The plots show ion current in the electron multiplier during the m/z scan of the RGA detector (horizontal axes).
Fig. 6.
Fig. 6. The contour plots of the ion current as a function of the parameters $a$ and $q$ of the trap for Th$^{1+}$ and Th$^{2+}$ charge states. The horizontal axes represent the $q$ parameter proportional to the amplitude of the driving voltage of the ion trap at 6.2 MHz. The vertical axes represent $a$ parameter linked to the DC bias voltage applied to the trap electrodes. The color bar indicates the ion current at the detector (arbitrary log scale), a measure of the number of ions that traveled through the ion trap. The predicted boundaries of stability regions from Mathieu equations are indicated by white lines.
Fig. 7.
Fig. 7. Time dependence of the ytterbium (a) and thorium (b) ions yield. The laser is moved to an undamaged location on the ablation target, and a sequence of pulses is repeated on the same spot.

Tables (1)

Tables Icon

Table 1. Dimensions of the Paul trap.

Metrics