Abstract

We report the momentum space dispersion pattern of strong coupling exciton-polaritons with a Rabi splitting (130 meV) in a ZnO self-construct high Q-factor whispering gallery mode (WGM) microcavity at room temperature (RT). By scanning excitations along the c-axis of a microwire (MW) using the angle-resolved spectroscopic technique (ARST) with different polarizations, the evolutions of a WGM polariton in a different coupling regime are investigated comprehensively. In addition, the more exciton-like component at a high k-value dispersion certifies the robust polariton is in SCR. The observations of polariton dispersion are well described by using the coupling wave model. Our results present a direct mapping of the exciton-polariton dispersions based on WGM, and thus supply a feasible road to realize novel polariton-type optoelectronic devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod

Liaoxin Sun, Hongxing Dong, Wei Xie, Zhenghua An, Xuechu Shen, and Zhanghai Chen
Opt. Express 18(15) 15371-15376 (2010)

Tailoring the potential landscape of room-temperature single-mode whispering gallery polariton condensate

Hyun Gyu Song, Sunghan Choi, Chung Hyun Park, Su-Hyun Gong, Chulwon Lee, Min Sik Kwon, Dae Gwang Choi, Kie Young Woo, and Yong-Hoon Cho
Optica 6(10) 1313-1320 (2019)

Experimental demonstration of Bi2Te3 saturable absorption with whispering gallery modes in an InGaAsP microdisk laser

Hsiang-Ting Lin, Junpeng Qiao, Jia-Chi Lan, Wei-Heng Sung, Chen-Li Yu, Min-Hsiung Shih, and Chao-Kuei Lee
OSA Continuum 3(1) 58-66 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [Crossref]
  2. T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
    [Crossref]
  3. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
    [Crossref]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
    [Crossref]
  5. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
    [Crossref]
  6. L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
    [Crossref]
  7. M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
    [Crossref]
  8. G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
    [Crossref]
  9. G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
    [Crossref]
  10. J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
    [Crossref]
  11. S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [Crossref]
  12. Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
    [Crossref]
  13. X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
    [Crossref]
  14. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
    [Crossref]
  15. C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
    [Crossref]
  16. C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
    [Crossref]
  17. A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
    [Crossref]
  18. A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
    [Crossref]
  19. H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .
  20. K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
    [Crossref]
  21. M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
    [Crossref]
  22. J. J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals,” Phys. Rev. 112(5), 1555–1567 (1958).
    [Crossref]
  23. H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
    [Crossref]
  24. T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
    [Crossref]
  25. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
    [Crossref]
  26. D. Sanitto and V. Timofeev, Exciton Polaritons in Microcavities, Springer, 2012.

2019 (1)

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

2018 (4)

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

2017 (2)

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

2015 (2)

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

2014 (3)

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

2013 (2)

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

2011 (1)

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

2010 (2)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

2007 (3)

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

2006 (2)

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

1958 (1)

J. J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals,” Phys. Rev. 112(5), 1555–1567 (1958).
[Crossref]

Abram, R. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

Agarwal, R.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Baldassarri, G.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Ballarini, D.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Barachati, F.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Baumberg, J. J.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Bose-Einstein condensation, E.-p.

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

Bramati, A.

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

Brand, S.

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

Burg, W.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

Butté, R.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Byrnes, T.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

Carlin, J. F.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Chen, A. Q.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Chen, R.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Chen, Z. Y.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Cho, C. H.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Christmann, G.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Dang, L. S.

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Daskalakis, K. S.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Deng, H.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Dominici, L.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Feltin, E.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Fieramosca, A.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Genoud, F. M.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Gerritsen, H. C.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Giacobino, E.

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

Gigli, G.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Giorgi, M. D.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Gogna, R.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

Grandjean, N.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Grosso, G.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Grundy, A. J. D.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Gui, X. C.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Hasnain, C. J. C.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Haug, H.

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

Höfling, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Högersthal, H. V.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Hopfield, J. J.

J. J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals,” Phys. Rev. 112(5), 1555–1567 (1958).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Jiang, M. M.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Kaliteevski, M. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

Kamp, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Kang, J. W.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Karr, J. P.

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Kavokin, A.

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

Kavokin, A. V.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Kéna-Cohen, S.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Kim, N. Y.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Kuipers, L.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Lagoudakis, P. G.

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Léger, Y.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Lerario, G.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Leyder, C.

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

Li, B. H.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Li, J. Y.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Li, K.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Li, Z. G.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Liang, Y. F.

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Liu, W. J.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Liu, W. Z.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

Liu, Y. C.

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Lou, G. L.

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Lu, Y. J.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Ma, J. G.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

Maier, S. A.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Marvinney, C. E.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Nardin, G.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Ng, K. W.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Ni, P. N.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

Nong Wang, J.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Park, S. J.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Pi?tka, B.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Plédran, B. D.

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Ravindran, P.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Ren, F.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Ren, Y. H.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Romanelli, M.

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

Rühle, S.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Sanitto, D.

D. Sanitto and V. Timofeev, Exciton Polaritons in Microcavities, Springer, 2012.

Sanvitto, D.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Schneider, C.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Shan, C. X.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Shen, D. Z.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Song, B. Y.

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Sun, H.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Sun, Y. Z.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Tang, Z. K.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Tang, Z. Y.

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Timofeev, V.

D. Sanitto and V. Timofeev, Exciton Polaritons in Microcavities, Springer, 2012.

Tran, T. T. D.

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Tutuc, E.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

van Vugt, L. K.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Vanmaekelbergh, D.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

Wang, C. L.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Wang, J. N.

Wang, S. P.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Wang, Y. Q.

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Wei, H. Y.

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

Wu, Y. Y.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Xu, H. Y.

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Yamamoto, Y.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

Yang, D. C.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

Yang, L.

Yang, X.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Yu, S. F.

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

Zang, J. H.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

Zhang, C.

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

Zhang, J.

Zhang, L.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

Zhang, L. X.

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, “Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings,” Opt. Express 23(12), 15565 (2015).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Zhang, Z. Z.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Zhao, H. F.

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Zheng, H. Y.

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

Zhu, H.

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

ACS Photonics (1)

A. Q. Chen, H. Zhu, Y. Y. Wu, G. L. Lou, Y. F. Liang, J. Y. Li, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Electrically Driven Single Microwire-Based Heterojuction Light-Emitting Devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Adv. Opt. Mater. (1)

A. Q. Chen, H. Zhu, Y. Y. Wu, D. C. Yang, J. Y. Li, S. F. Yu, Z. Y. Chen, Y. H. Ren, X. C. Gui, S. P. Wang, and Z. K. Tang, “Low-Threshold Whispering-Gallery Mode Upconversion Lasing via Simultaneous Six-Photon Absorption,” Adv. Opt. Mater. 6(17), 1800407 (2018).
[Crossref]

Nano Lett. (1)

K. Li, H. Sun, F. Ren, K. W. Ng, T. T. D. Tran, R. Chen, and C. J. C. Hasnain, “Tailoring the Optical Characteristics of Microsized InP Nanoneedles Directly Grown on Silicon,” Nano Lett. 14(1), 183–190 (2014).
[Crossref]

Nanoscale (3)

Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, “Electrically pumped Fabry-Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

X. Yang, C. X. Shan, P. N. Ni, M. M. Jiang, A. Q. Chen, H. Zhu, J. H. Zang, Y. J. Lu, and D. Z. Shen, “Electrically driven lasers from van der Waals heterostructures,” Nanoscale 10(20), 9602–9607 (2018).
[Crossref]

C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. Nong Wang, J. G. Ma, and Y. C. Liu, “Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons,” Nanoscale 7(3), 1073–1080 (2015).
[Crossref]

Nat. Commun. (1)

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9(1), 713 (2018).
[Crossref]

Nat. Photonics (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Nat. Phys. (4)

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. D. Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto, “Room-temperature superfluidity in a polariton condensate,” Nat. Phys. 13(9), 837–841 (2017).
[Crossref]

G. Nardin, G. Grosso, Y. Léger, B. Piȩtka, F. M. Genoud, and B. D. Plédran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7(8), 635–641 (2011).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat. Phys. 10(11), 803–813 (2014).
[Crossref]

Nature (2)

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

J. J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals,” Phys. Rev. 112(5), 1555–1567 (1958).
[Crossref]

Phys. Rev. B (1)

M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75(23), 233309 (2007).
[Crossref]

Phys. Rev. Lett. (4)

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton Polaritons Confined in a ZnO Nanowire Cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref]

M. Romanelli, C. Leyder, J. P. Karr, E. Giacobino, and A. Bramati, “Four Wave Mixing Oscillation in a Semiconductor Microcavity: Generation of Two Correlated Polariton Populations,” Phys. Rev. Lett. 98(10), 106401 (2007).
[Crossref]

S. Christopoulos, G. Baldassarri, H. V. Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[Crossref]

Rev. Mod. Phys. (2)

H. Deng, Y. Yamamoto, H. Haug, and E.-p. Bose-Einstein condensation, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Sci. Adv. (1)

J. W. Kang, B. Y. Song, W. J. Liu, S. J. Park, R. Agarwal, and C. H. Cho, “Room temperature polariton lasing in quantum heterostructure nanocavities,” Sci. Adv. 5(4), eaau9338 (2019).
[Crossref]

Other (2)

H. Y. Zheng, Z. Y. Chen, H. Zhu, Z. Y. Tang, Y. Q. Wang, H. Y. Wei, and C. X. Shan, Dispersion of Exciton-polariton based on ZnO/MgZnO Quantum Wells at Room-temperature. Chinese Phys. B.2020, https://doi.org/10.1088/1674-1056/ab99b3 .

D. Sanitto and V. Timofeev, Exciton Polaritons in Microcavities, Springer, 2012.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental material.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The properties of gain media for exciton polariton. (a) The schematic of micro-PL setup for the individual ZnO MW measurement. (b) The typical PL spectrum of single MW at RT. Inset, SEM photograph presents the magnified cross-section image of single MW resonator, which shows perfect side and end face quality. (c) The relation of the measured radius R and scan position xp. The solid line is fitting curve according to Eq. (1). Inset, the schematic diagram of hexagonal resonator.
Fig. 2.
Fig. 2. The properties of WGM in MW. (a) The simulated result about electric-field distributions for TE polarization mode in the microcavity with diameter of 6 µm, here the photon corresponds to excitonic radiation of sample. Note, the Q-factor of WGM is high due to its optical field can be confined well in the MW. (b) The result about TM-polarization WGM field distribution in the cavity. (c) The experimental data about the dependence of Purcell factor (Fp) on the MW diameter for TE mode. The solid line indicates the fitting curve according to the Eq. (3).
Fig. 3.
Fig. 3. PL mapping of the single tapered MW with σ excitation (E and k ⊥ c-axis). (a) Spatially resolved PL along the c-axis of MW with TE polarized detection. Here, the color balls indicate the peak of spectra. The solid line is fitting curve and the numbers indicate the mode order. (b) The detailed µ-PL mapping along the c-axis with the σ excitation configuration. The white dash line indicates the isolated A-/B-exciton state, meanwhile, the theoretical fittings of polariton branches are shown with red lines. (c) Calculated results about the whole dispersion of polariton. The energy of A-/B-exciton are shown with a unified black dotted lines and the lower (yellow), upper polariton branch (green), pure WGM (blue) are also given. The sign of UPB and LPB denote the UP and LP branches, respectively.
Fig. 4.
Fig. 4. The characteristics of WGM polaritons at RT. The A-/B-exciton and photon fraction (Hopfield coefficient) of the LP branch versus radius of MW with different WGM orders of 23, 24 and 24 for a, b and c respectively.
Fig. 5.
Fig. 5. The RT angle-resolve PL spectra for the dispersion characteristics of WGM polariton with the σ excitation. (a) The schematic diagram of wavevector in MW for the ARST measurement. (b) The pattern presents the dispersion behavior of TE and TM mode polariton in the MW respectvely, which is obtained at certain diameter of the tapered MW. The blue shift of TM polariton can be visible remarkable, which is resulted from the high energy C-exciton coupling polariton.
Fig. 6.
Fig. 6. The dispersion properties of WGM polaritons at large k// vector. The experimental TE polarization (Exp. TE) dispersion of polariton at large angle is given (left panel). Note that the detected angle has been enhanced to 50°, which can be used to observe the exciton component at high k-value. The dash lines indicate the fitting curves for different order LPB. For comparison, the simulated results (Sim. TE) about WGM polaritons in MW is also given (right panel). Here, the value of δ between photon and exciton is about −110 meV for m=85.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = 814 + 0.4 x + 0.01 x 2 ( nm )
F p = Δ ω δ ω
F p = Q λ 3 8 π V e f f
E = h c 3 3 n R [ m + 6 π arctan ( β 3 n 2 4 ) ]
( 1 + ω L T ω e x ω ) ω 2 = ω e x 2
g 0 2 ω e x ω L T
| X k | 2 = 1 2 ( 1 + δ k δ k 2 + 4 g 0 2 ) , | C k | 2 = 1 2 ( 1 δ k δ k 2 + 4 g 0 2 )
E L P , U P ( k / / ) = 1 2 [ E p h ( k / / ) + E e x ( k / / ) ] ± 1 2 [ E p h ( k / / ) E e x ( k / / ) ] 2 + 4 g 0 2

Metrics