Abstract

We incorporate two techniques into pre-chirp managed amplification (PCMA) to achieve high-energy ultrashort pulses with the duration well below 100 fs. Numerical simulations confirmed by our experimental results demonstrate that seeding PCMA with circularly polarized pulses instead of linearly polarized pulses can increase the amplified pulse energy by 1.5 times. We also employ high-dispersion chirped mirrors to compress the amplified pulses with the throughput efficiency as high as 98%. These two techniques allow us to demonstrate an Yb-fiber PCMA system that emits 50-MHz, 47-fs pulses with 101.2-W average power.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
    [Crossref]
  2. J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
    [Crossref]
  3. F. Roser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tunnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
    [Crossref]
  4. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Haedrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tuennermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
    [Crossref]
  5. W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
    [Crossref]
  6. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref]
  7. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
    [Crossref]
  8. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
    [Crossref]
  9. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33(2), 107–109 (2008).
    [Crossref]
  10. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19(13), 12074–12080 (2011).
    [Crossref]
  11. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20(27), 28672–28682 (2012).
    [Crossref]
  12. J. Lim, H.-W. Chen, G. Chang, and F. X. Kärtner, “Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization,” Opt. Express 21(4), 4531–4538 (2013).
    [Crossref]
  13. J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
    [Crossref]
  14. W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151–154 (2015).
    [Crossref]
  15. Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
    [Crossref]
  16. D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
    [Crossref]
  17. H. Song, B. Liu, Y. Li, Y. Song, H. He, L. Chai, M. Hu, and C. Wang, “Practical 24-fs, 1-µJ, 1-MHz Yb-fiber laser amplification system,” Opt. Express 25(7), 7559–7566 (2017).
    [Crossref]
  18. D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
    [Crossref]
  19. Y. Hua, G. Chang, F. X. Kartner, and D. N. Schimpf, “Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise,” Opt. Express 26(5), 6427–6438 (2018).
    [Crossref]
  20. P. Sidorenko, W. Fu, and F. Wise, “Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit,” Optica 6(10), 1328 (2019).
    [Crossref]
  21. D. N. Schimpf, T. Eidam, E. Seise, S. Haedrich, J. Limpert, and A. Tuennermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17(21), 18774–18781 (2009).
    [Crossref]
  22. X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
    [Crossref]
  23. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tuennermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref]
  24. J. R. Birge and F. X. Kärtner, “Phase distortion ratio: alternative to group delay dispersion for analysis and optimization of dispersion compensating optics,” Opt. Lett. 35(14), 2469–2471 (2010).
    [Crossref]
  25. H.-W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
    [Crossref]
  26. H. Tu, Y. Liu, J. Laegsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
    [Crossref]
  27. M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
    [Crossref]
  28. B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
    [Crossref]

2019 (1)

2018 (2)

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Y. Hua, G. Chang, F. X. Kartner, and D. N. Schimpf, “Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise,” Opt. Express 26(5), 6427–6438 (2018).
[Crossref]

2017 (1)

2016 (2)

Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

2015 (1)

2014 (2)

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref]

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (2)

2010 (3)

2009 (3)

2008 (1)

2007 (2)

2002 (1)

2001 (1)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
[Crossref]

2000 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
[Crossref]

1993 (1)

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Aguergaray, C.

Andersen, T. V.

Bai, D.

Birge, J. R.

Boppart, S. A.

Borot, A.

Boullet, J.

Buck, J. A.

Canova, L.

Carstens, H.

Chai, L.

Chang, G.

Chen, H.-W.

Chen, L.-J.

Chen, X.

Clausnitzer, T.

Cormier, E.

Dantus, M.

Deng, Z.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Druon, F.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Durfee, C. G.

Eidam, T.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Fu, W.

Fuchs, H. J.

Gabler, T.

Galvanauskas, A.

Georges, P.

Gu, C.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Gunaratne, T.

Hadrich, S.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
[Crossref]

Haedrich, S.

Hanf, S.

Hanna, M.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

He, H.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Hu, M.

Hu, X.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
[Crossref]

Hua, Y.

Huang, L.

Huang, S.-W.

Jansen, F.

Jauregui, C.

Jullien, A.

Kartner, F. X.

Kärtner, F. X.

Kley, E. B.

Kopf, D.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Laegsgaard, J.

Li, H.

Li, W.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref]

Li, Y.

Lim, J.

Limpert, J.

W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151–154 (2015).
[Crossref]

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Haedrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tuennermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
[Crossref]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tuennermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref]

D. N. Schimpf, T. Eidam, E. Seise, S. Haedrich, J. Limpert, and A. Tuennermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17(21), 18774–18781 (2009).
[Crossref]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
[Crossref]

F. Roser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tunnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
[Crossref]

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
[Crossref]

Liu, B.

Liu, C.-H.

Liu, W.

Liu, Y.

Lopez-Martens, R.

Luo, D.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

Malvache, A.

Misas, C. J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
[Crossref]

Mottay, E.

Nie, B.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Papadopoulos, D. N.

Pestov, D.

Ralph, S. E.

Roser, F.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
[Crossref]

F. Roser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tunnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
[Crossref]

Rothhardt, J.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Sidorenko, P.

Siegel, M.

Song, H.

Song, Y.

Sosnowski, T.

Stutzki, F.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Trisorio, A.

Tu, H.

Tuennermann, A.

Tunnermann, A.

Tünnermann, A.

Turchinovich, D.

Wang, C.

Wang, Y.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
[Crossref]

Washburn, B. R.

Wirth, C.

Wise, F.

Wise, F. W.

Zaouter, Y.

Zellmer, H.

Zeng, H.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref]

Zhang, W.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

Zhao, J.

Zhao, W.

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
[Crossref]

Zhou, L.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

Zhu, Z.

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

Zöllner, K.

Appl. Phys. Lett. (2)

D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, and H. Zeng, “High-power Yb- fiber comb based on pre-chirped-management self-similar amplification,” Appl. Phys. Lett. 112(6), 061106 (2018).
[Crossref]

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

W. Zhao, X. Hu, and Y. Wang, “Femtosecond-pulse fiber based amplification techniques and their applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 512–524 (2014).
[Crossref]

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
[Crossref]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Top. Quantum Electron. 15(1), 159–169 (2009).
[Crossref]

Opt. Express (12)

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
[Crossref]

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Haedrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tuennermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
[Crossref]

H. Tu, Y. Liu, J. Laegsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
[Crossref]

J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 32214–32219 (2014).
[Crossref]

J. Lim, H.-W. Chen, G. Chang, and F. X. Kärtner, “Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization,” Opt. Express 21(4), 4531–4538 (2013).
[Crossref]

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19(13), 12074–12080 (2011).
[Crossref]

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20(27), 28672–28682 (2012).
[Crossref]

D. N. Schimpf, T. Eidam, E. Seise, S. Haedrich, J. Limpert, and A. Tuennermann, “Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity,” Opt. Express 17(21), 18774–18781 (2009).
[Crossref]

H.-W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
[Crossref]

H. Song, B. Liu, Y. Li, Y. Song, H. He, L. Chai, M. Hu, and C. Wang, “Practical 24-fs, 1-µJ, 1-MHz Yb-fiber laser amplification system,” Opt. Express 25(7), 7559–7566 (2017).
[Crossref]

Y. Hua, G. Chang, F. X. Kartner, and D. N. Schimpf, “Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise,” Opt. Express 26(5), 6427–6438 (2018).
[Crossref]

Y. Liu, W. Li, D. Luo, D. Bai, C. Wang, and H. Zeng, “Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier,” Opt. Express 24(10), 10939–10945 (2016).
[Crossref]

Opt. Lett. (8)

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
[Crossref]

Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33(2), 107–109 (2008).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tuennermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref]

J. R. Birge and F. X. Kärtner, “Phase distortion ratio: alternative to group delay dispersion for analysis and optimization of dispersion compensating optics,” Opt. Lett. 35(14), 2469–2471 (2010).
[Crossref]

B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
[Crossref]

W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151–154 (2015).
[Crossref]

F. Roser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tunnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

D. Luo, W. Li, Y. Liu, C. Wang, Z. Zhu, W. Zhang, and H. Zeng, “High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the experimental setup. HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarization beam splitter, HR: high reflection mirror, PCF: photonics crystal fiber, L: plane convex lens, LD: laser diode, TG: transmission grating, DM: dichroic mirror, CMs: chirped mirrors.
Fig. 2.
Fig. 2. Structure and performance of home-designed chirped mirror featuring high dispersion.
Fig. 3.
Fig. 3. Effect of seeding polarization on spectral evolution inside the pre-chirp managed Yb-fiber amplifier. (a) Amplification of linearly polarized pulses from 44 nJ to 1.4 µJ. (b) Amplification of circularly polarized pulses from 44 nJ to 1.4 µJ. (c) Amplification of circularly polarized pulses from 66 nJ to 2.1 µJ. The spectral intensity is normalized and shown in logarithmic scale. White arrows in each figure indicates the narrowest bandwidth.
Fig. 4.
Fig. 4. Amplification of elliptically polarized seeding pulses from 44 nJ to 1.4 µJ in Yb-fiber PCMA system. The seeding pulse corresponds to superposition of a RHCP pulse with 40-nJ energy and a LHCP pulse with 4-nJ energy. (a) Spectral evolution of RHCP eigenstate. (b) Spectral evolution of LHCP eigenstate. (c) Red curve: spectrum of RHCP eigenstate, Blue curve: spectrum LHCP eigenstate, and black curve: total spectrum. (d) Ellipticity as a function of wavelength for the amplified pulse. Dotted curve: ellipticity at the amplifier input.
Fig. 5.
Fig. 5. (a) Spectral evolution of circularly polarized pulses when amplified up to 55 W. (b) Amplified spectra at 60-W average power. Blue curve: circularly polarized pulse, red curve: linearly polarized pulse. Inset: spectrum of input pulse before the amplifier.
Fig. 6.
Fig. 6. (a) Measured spectra of 50-W linearly polarized pulses (red curve) and 75-W circularly polarized pulses (blue curve). (b) Measured autocorrelation traces of the compressed pulses. Red curve: 50-W linearly polarized pulses, Blue curve: 75-W circularly polarized pulses. (c) Simulated spectra of 50-W linearly polarized pulses (red curve) and 75-W circularly polarized pulses (blue curve). (d) Simulated autocorrelation traces for the compressed pulses. Red curve: 50-W linearly polarized pulses, Blue curve: 75-W circularly polarized pulses.
Fig. 7.
Fig. 7. Measured autocorrelation traces of the compressed pulses versus the number of HDCMs. In the experiment, 3.2-W circularly polarized pulses are amplified to 103.4-W average power.

Tables (2)

Tables Icon

Table 1. Different polarization states of U and corresponding e values

Tables Icon

Table 2. Parameters in the simulation for modeling Yb-fiber PCMA system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U 1 z k 2 i k + 1 β k k ! k U 1 τ k = 1 L N L ( i 1 ω 0 τ ) ( f R U 1 h R ( τ τ ) [ | U 1 ( τ ) | 2 + | U 2 ( τ ) | 2 ] d τ + ( 1 f R ) U 1 [ 2 3 | U 1 | 2 + 4 3 | U 2 | 2 ] )  +  g 2 U 1
U 2 z k 2 i k + 1 β k k ! k U 2 τ k = 1 L N L ( i 1 ω 0 τ ) ( f R U 2 h R ( τ τ ) [ | U 2 ( τ ) | 2 + | U 1 ( τ ) | 2 ] d τ + ( 1 f R ) U 2 [ 2 3 | U 2 | 2 + 4 3 | U 1 | 2 ] )  +  g 2 U 2
e = | U 1 | | U 2 | | U 1 | + | U 2 | .