Abstract

Homocysteine (HCy) is a sulphur-containing amino acid that correlates with several maladaptive health conditions, including an enhanced risk of cardiovascular and neurodegenerative diseases. Detection of HCy and its potentially pathogenic metabolites are studied here for the first time, to the first of our knowledge, using Raman spectroscopy. This study shows that different HCy metabolites have distinct Raman spectra and that the limits of detection reach the sub-mM level for these compounds. This investigation paves the way for photonics–based approaches for detection of HCy–related fluids as predictive biomarkers of disease in blood, which would assist in early intervention for improved clinical outcomes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
    [Crossref]
  2. G. H. Doherty, “Homocysteine and Parkinson’s Disease: A Complex Relationship,” J. Neurol. Disord. 1(1), 107 (2013).
    [Crossref]
  3. M. Amores-Sánchez and M. A. Medina, “Methods for the determination of plasma total homocysteine: a review,” Clin. Chem. Lab. Med. 38(3), 199–204 (2000).
    [Crossref]
  4. J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
    [Crossref]
  5. N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
    [Crossref]
  6. V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
    [Crossref]
  7. N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
    [Crossref]
  8. C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
    [Crossref]
  9. T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
    [Crossref]
  10. F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
    [Crossref]
  11. K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
    [Crossref]
  12. Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
    [Crossref]
  13. G. Chwatko and H. Jakubowski, “The determination of homocysteine–thiolactone in human plasma,” Anal. Biochem. 337(2), 271–277 (2005).
    [Crossref]
  14. S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
    [Crossref]
  15. C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
    [Crossref]
  16. M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
    [Crossref]
  17. L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
    [Crossref]
  18. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782 (2017).
    [Crossref]
  19. V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
    [Crossref]
  20. V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
    [Crossref]
  21. M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
    [Crossref]
  22. X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).
  23. F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
    [Crossref]
  24. T. Li, H. Ma, Y. Peng, X. Chen, Z. Zhu, X. Wu, T. Kou, B. Song, S. Guo, L. Liu, and Y. Zhu, “Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine,” Biomed. Opt. Express 9(11), 5467 (2018).
    [Crossref]
  25. L. Wang, X. Wu, Y. Peng, Q. Yang, X. Chen, W. Wu, Y. Zhu, and S. Zhuang, “Quantitative analysis of homocysteine in liquid by terahertz spectroscopy,” Biomed. Opt. Express 11(5), 2570 (2020).
    [Crossref]
  26. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
    [Crossref]
  27. W. Möller and R. Kaiser, “Impurity induced Raman spectra of NaCl and KCl crystals with various monovalent impurities,” Phys. Status Solidi B 50(1), 155–169 (1972).
    [Crossref]
  28. I. Đuričković, M. Marchetti, R. Claverie, P. Bourson, J.-M. Chassot, and M. D. Fontana, “Experimental Study of NaCl Aqueous Solutions by Raman Spectroscopy: Towards a New Optical Sensor,” Appl. Spectrosc. 64(8), 853–857 (2010).
    [Crossref]
  29. R. Ragone, “Homocystine solubility and vascular disease,” FASEB J. 16(3), 401–404 (2002).
    [Crossref]
  30. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]
  31. S. Sato, S. Higuchi, and S. Tanaka, “Identification and Determination of Oxygen-Containing Inorganosulfur Compounds by Laser Raman Spectrometry,” Appl. Spectrosc. 39(5), 822–827 (1985).
    [Crossref]
  32. K. S. McCully and R. B. Wilson, “Homocysteine theory of arteriosclerosis,” Atherosclerosis 22(2), 215–227 (1975).
    [Crossref]
  33. S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
    [Crossref]
  34. R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
    [Crossref]
  35. R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
    [Crossref]
  36. J. Nichols, “Testing for homocysteine in clinical practice,” Nutr. Health 23(1), 13–15 (2017).
    [Crossref]
  37. X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
    [Crossref]
  38. D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
    [Crossref]
  39. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
    [Crossref]

2020 (2)

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

L. Wang, X. Wu, Y. Peng, Q. Yang, X. Chen, W. Wu, Y. Zhu, and S. Zhuang, “Quantitative analysis of homocysteine in liquid by terahertz spectroscopy,” Biomed. Opt. Express 11(5), 2570 (2020).
[Crossref]

2018 (3)

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

T. Li, H. Ma, Y. Peng, X. Chen, Z. Zhu, X. Wu, T. Kou, B. Song, S. Guo, L. Liu, and Y. Zhu, “Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine,” Biomed. Opt. Express 9(11), 5467 (2018).
[Crossref]

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

2017 (3)

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782 (2017).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

J. Nichols, “Testing for homocysteine in clinical practice,” Nutr. Health 23(1), 13–15 (2017).
[Crossref]

2016 (1)

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

2015 (1)

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

2014 (2)

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

2013 (3)

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

G. H. Doherty, “Homocysteine and Parkinson’s Disease: A Complex Relationship,” J. Neurol. Disord. 1(1), 107 (2013).
[Crossref]

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

2012 (3)

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

2010 (3)

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

I. Đuričković, M. Marchetti, R. Claverie, P. Bourson, J.-M. Chassot, and M. D. Fontana, “Experimental Study of NaCl Aqueous Solutions by Raman Spectroscopy: Towards a New Optical Sensor,” Appl. Spectrosc. 64(8), 853–857 (2010).
[Crossref]

2007 (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

2006 (1)

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

2005 (4)

G. Chwatko and H. Jakubowski, “The determination of homocysteine–thiolactone in human plasma,” Anal. Biochem. 337(2), 271–277 (2005).
[Crossref]

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
[Crossref]

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

2004 (1)

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

2003 (1)

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

2002 (2)

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

R. Ragone, “Homocystine solubility and vascular disease,” FASEB J. 16(3), 401–404 (2002).
[Crossref]

2000 (2)

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

M. Amores-Sánchez and M. A. Medina, “Methods for the determination of plasma total homocysteine: a review,” Clin. Chem. Lab. Med. 38(3), 199–204 (2000).
[Crossref]

1994 (1)

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

1989 (1)

C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
[Crossref]

1985 (1)

1975 (1)

K. S. McCully and R. B. Wilson, “Homocysteine theory of arteriosclerosis,” Atherosclerosis 22(2), 215–227 (1975).
[Crossref]

1972 (1)

W. Möller and R. Kaiser, “Impurity induced Raman spectra of NaCl and KCl crystals with various monovalent impurities,” Phys. Status Solidi B 50(1), 155–169 (1972).
[Crossref]

1963 (1)

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Ahn, S.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Akchiche, N.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Alberto, J. M.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Amores-Sánchez, M.

M. Amores-Sánchez and M. A. Medina, “Methods for the determination of plasma total homocysteine: a review,” Clin. Chem. Lab. Med. 38(3), 199–204 (2000).
[Crossref]

Andrade, J. M.

C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
[Crossref]

Andrews, M. R.

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

Araki, W.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Armitage, J.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Banerjee, R.

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

Barbosa, J.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Baron, V. O.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Barudzic, N.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Beiser, A.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Bennett, D.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Bodamer, O. A.

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

Bønaa, K. H.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Bossenmeyer-Pourie, C.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Bourson, P.

Camadro, J. M.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Campbell, E. C.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Carson, N. A.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Chassot, J.-M.

Chen, M.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782 (2017).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Chen, X.

Cheng, D.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Cho, J.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Chu, R.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Chwatko, G.

G. Chwatko and H. Jakubowski, “The determination of homocysteine–thiolactone in human plasma,” Anal. Biochem. 337(2), 271–277 (2005).
[Crossref]

Clark, S. O.

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Clarke, R.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Claverie, R.

Collins, R.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Cusworth, D. C.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

D’Agostino, R. B.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Dangour, A. D.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Daval, J. L.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

de Groot, L. C.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

de Jonge, R.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

De Luca, A. C.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

Dent, C. E.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Deutsch, J.

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

Dholakia, K.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782 (2017).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

Dhonukshe-Rutten, R. A. M.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Djuric, D. M.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Doherty, G. H.

G. H. Doherty, “Homocysteine and Parkinson’s Disease: A Complex Relationship,” J. Neurol. Disord. 1(1), 107 (2013).
[Crossref]

Ðurickovic, I.

Erwa, W.

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

Eussen, S. J.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Field, C. M.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Fontana, M. D.

Forbes, L. H.

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Galan, P.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Gausset, P.

F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
[Crossref]

Gaziano, J. M.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Gendelman, H. E.

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

Ghorpade, A.

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

Gillespie, S. H.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Glynne-Jones, P.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

Grodstein, F.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Guarino, P.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Gueant, J. L.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Guo, S.

Gusachenko, I.

Halsey, J.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Hammarstrom, B.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

Hammond, R. J. H.

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Han, Q.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Hankey, G. J.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Hasegawa, T.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Hassell, K.

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

Helle, D.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Herrington, C. S.

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

Higuchi, S.

Hoffman, R. M.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Huang, C.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Huo, Y.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Jacques, P. F.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Jakovljevic, V.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Jakubowski, H.

G. Chwatko and H. Jakubowski, “The determination of homocysteine–thiolactone in human plasma,” Anal. Biochem. 337(2), 271–277 (2005).
[Crossref]

Jamison, R.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Jia, H.

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Jiang, Y.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Jo, D.-G.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Joksimovic, J.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Kaiser, R.

W. Möller and R. Kaiser, “Impurity induced Raman spectra of NaCl and KCl crystals with various monovalent impurities,” Phys. Status Solidi B 50(1), 155–169 (1972).
[Crossref]

Kerek, R.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Kim, K.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Kim, M.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Kim, S.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Kim, W.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Kim, Y.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Kolhouse, J.

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

Kong, F.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Kong, H.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Kou, T.

Koziel, V.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Lee, J.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Leger, T.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Lewerin, C.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Lewington, S.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Li, J.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Li, T.

Li, W.

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Lindemans, A. G.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Liu, L.

Liu, R.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Lonn, E.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Lu, H.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Ma, H.

Manson, J. E.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Marchetti, M.

Martin, N.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Mas, J.

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

Mattson, M. P.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Mazilu, M.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

McCully, K. S.

K. S. McCully and R. B. Wilson, “Homocysteine theory of arteriosclerosis,” Atherosclerosis 22(2), 215–227 (1975).
[Crossref]

McReynolds, N.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Medina, M. A.

M. Amores-Sánchez and M. A. Medina, “Methods for the determination of plasma total homocysteine: a review,” Clin. Chem. Lab. Med. 38(3), 199–204 (2000).
[Crossref]

Mir, F.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Möller, W.

W. Möller and R. Kaiser, “Impurity induced Raman spectra of NaCl and KCl crystals with various monovalent impurities,” Phys. Status Solidi B 50(1), 155–169 (1972).
[Crossref]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Mühl, A.

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

Nakagawa, M.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Neill, D. W.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Nichols, J.

J. Nichols, “Testing for homocysteine in clinical practice,” Nutr. Health 23(1), 13–15 (2017).
[Crossref]

Nygård, O.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Ortiou, S.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Pang, W.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Parish, S.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Pechanova, O.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Peng, Y.

Peto, R.

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Pluijm, S. M. F.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Pourie, G.

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

Powis, S. J.

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Qin, X.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Ragone, R.

R. Ragone, “Homocystine solubility and vascular disease,” FASEB J. 16(3), 401–404 (2002).
[Crossref]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Riches, A.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Rosenberg, I. H.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Saito, T.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Santhoshkumar, C.

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

Sato, S.

Selakovic, D.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Selhub, J.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Seshadri, S.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Skeaff, M.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Song, B.

Spence, J. D.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Srejovic, I.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Stott, D. J.

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Sun, X.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Tan, X.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Tan, Y.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Tanaka, S.

Tang, B.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Tang, L.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Thomas, M.

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

Tuschl, K.

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

Uitterlinden, J.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Ukai, W.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

van der Klift, M.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

van Meurs, J. B. J.

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Vanderpas, J.

F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
[Crossref]

Vitvitsky, V.

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

Wang, L.

Wang, X.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Weaver, L. C.

C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
[Crossref]

Westall, R. G.

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Williams, A.

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Wilson, P. W.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Wilson, R. B.

K. S. McCully and R. B. Wilson, “Homocysteine theory of arteriosclerosis,” Atherosclerosis 22(2), 215–227 (1975).
[Crossref]

Wolf, P. A.

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

Wolff, F.

F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
[Crossref]

Woolford, L.

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

Wu, J.

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Wu, W.

Wu, X.

Xu, K.

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Xu, M.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Xu, X.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Yamada, T.

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Yang, H.

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Yang, Q.

Yang, Z.

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Yardley, C. P.

C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
[Crossref]

Yoo, B.

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Zhang, N.

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Zhang, X.

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Zhang, Y.

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

Zhu, Y.

Zhu, Z.

Zhuang, S.

Zivkovic, V.

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Am. J. Clin. Nutr. (1)

R. Clarke, D. Bennett, S. Parish, S. Lewington, M. Skeaff, S. J. Eussen, C. Lewerin, D. J. Stott, J. Armitage, G. J. Hankey, E. Lonn, J. D. Spence, P. Galan, L. C. de Groot, J. Halsey, A. D. Dangour, R. Collins, and F. Grodstein, “Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals,” Am. J. Clin. Nutr. 100(2), 657–666 (2014).
[Crossref]

Anal. Biochem. (2)

G. Chwatko and H. Jakubowski, “The determination of homocysteine–thiolactone in human plasma,” Anal. Biochem. 337(2), 271–277 (2005).
[Crossref]

C. Santhoshkumar, J. Deutsch, J. Kolhouse, K. Hassell, and J. Kolhouse, “Measurement of excitatory sulfur amino acids cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring,” Anal. Biochem. 220(2), 249–256 (1994).
[Crossref]

Anal. Chem. (1)

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82(2), 738–745 (2010).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Arch. Dis. Child. (1)

N. A. Carson, D. C. Cusworth, C. E. Dent, C. M. Field, D. W. Neill, and R. G. Westall, “Homocystinuria: A New Inborn Error of Metabolism Associated With Mental Deficiency,” Arch. Dis. Child. 38(201), 425–436 (1963).
[Crossref]

Arch. Intern. Med. (1)

R. Clarke, J. Halsey, S. Lewington, E. Lonn, J. Armitage, J. E. Manson, K. H. Bønaa, J. D. Spence, O. Nygård, R. Jamison, J. M. Gaziano, P. Guarino, D. Bennett, F. Mir, R. Peto, and R. CollinsB-Vitamin Treatment Trialists’ Collaboration, “Effects of lowering homocysteine levels with b vitamins on cardiovascular disease cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals,” Arch. Intern. Med. 170(18), 1622–1631 (2010).
[Crossref]

Atherosclerosis (2)

X. Qin, M. Xu, Y. Zhang, J. Li, X. Xu, X. Wang, X. Xu, and Y. Huo, “Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials,” Atherosclerosis 222(2), 307–313 (2012).
[Crossref]

K. S. McCully and R. B. Wilson, “Homocysteine theory of arteriosclerosis,” Atherosclerosis 22(2), 215–227 (1975).
[Crossref]

BioMed Res. Int. (1)

V. Zivkovic, V. Jakovljevic, O. Pechanova, I. Srejovic, J. Joksimovic, D. Selakovic, N. Barudzic, and D. M. Djuric, “Effects of DL-Homocysteine Thiolactone on Cardiac Contractility, Coronary Flow, and Oxidative Stress Markers in the Isolated Rat Heart: The Role of Different Gasotransmitters,” BioMed Res. Int. 2013, 1–9 (2013).
[Crossref]

Biomed. Opt. Express (2)

Chem. Commun. (1)

F. Kong, R. Liu, R. Chu, X. Wang, K. Xu, and B. Tang, “A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells,” Chem. Commun. 49(80), 9176–9178 (2013).
[Crossref]

Clin. Chem. (1)

Y. Tan, X. Sun, L. Tang, N. Zhang, Q. Han, M. Xu, X. Tan, X. Tan, and R. M. Hoffman, “Automated Enzymatic Assay for Homocysteine,” Clin. Chem. 49(6), 1029–1030 (2003).
[Crossref]

Clin. Chem. Lab. Med. (1)

M. Amores-Sánchez and M. A. Medina, “Methods for the determination of plasma total homocysteine: a review,” Clin. Chem. Lab. Med. 38(3), 199–204 (2000).
[Crossref]

Clin. Chim. Acta (1)

K. Tuschl, O. A. Bodamer, W. Erwa, and A. Mühl, “Rapid analysis of total plasma homocysteine by tandem mass spectrometry,” Clin. Chim. Acta 351(1-2), 139–141 (2005).
[Crossref]

Clin. Lab. (1)

F. Wolff, P. Gausset, and J. Vanderpas, “Better stability of total homocysteine measurement with sodium fluoride than with edta,” Clin. Lab. 51(5-6), 275–278 (2005).
[Crossref]

Commun. Biol. (1)

V. O. Baron, M. Chen, B. Hammarstrom, R. J. H. Hammond, P. Glynne-Jones, S. H. Gillespie, and K. Dholakia, “Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform,” Commun. Biol. 3(1), 236 (2020).
[Crossref]

FASEB J. (2)

R. Ragone, “Homocystine solubility and vascular disease,” FASEB J. 16(3), 401–404 (2002).
[Crossref]

N. Akchiche, C. Bossenmeyer-Pourie, R. Kerek, N. Martin, G. Pourie, V. Koziel, D. Helle, J. M. Alberto, S. Ortiou, J. M. Camadro, T. Leger, J. L. Gueant, and J. L. Daval, “Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells,” FASEB J. 26(10), 3980–3992 (2012).
[Crossref]

J. Auton. Nerv. Syst. (1)

C. P. Yardley, J. M. Andrade, and L. C. Weaver, “Evaluation of cardiovascular control by neurons in the dorsal medulla of rats,” J. Auton. Nerv. Syst. 29(1), 1–11 (1989).
[Crossref]

J. Biol. Chem. (1)

V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A Functional Transsulfuration Pathway in the Brain Links to Glutathione Homeostasis,” J. Biol. Chem. 281(47), 35785–35793 (2006).
[Crossref]

J. Biophotonics (2)

L. Woolford, M. Chen, K. Dholakia, and C. S. Herrington, “Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy,” J. Biophotonics 11(4), e201700244 (2018).
[Crossref]

M. Chen, J. Mas, L. H. Forbes, M. R. Andrews, and K. Dholakia, “Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography,” J. Biophotonics 11(1), e201700129 (2018).
[Crossref]

J. Neurol. Disord. (1)

G. H. Doherty, “Homocysteine and Parkinson’s Disease: A Complex Relationship,” J. Neurol. Disord. 1(1), 107 (2013).
[Crossref]

J. Neurosci. Res. (1)

T. Hasegawa, W. Ukai, D.-G. Jo, X. Xu, M. P. Mattson, M. Nakagawa, W. Araki, T. Saito, and T. Yamada, “Homocysteic acid induces intraneuronal accumulation of neurotoxic Aβ42: Implications for the pathogenesis of Alzheimer’s disease,” J. Neurosci. Res. 80(6), 869–876 (2005).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

N. Engl. J. Med. (2)

S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. Wilson, and P. A. Wolf, “Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease,” N. Engl. J. Med. 346(7), 476–483 (2002).
[Crossref]

J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, A. G. Lindemans, and J. Uitterlinden, “Homocysteine Levels and the Risk of Osteoporotic Fracture,” N. Engl. J. Med. 350(20), 2033–2041 (2004).
[Crossref]

Nutr. Health (1)

J. Nichols, “Testing for homocysteine in clinical practice,” Nutr. Health 23(1), 13–15 (2017).
[Crossref]

Nutr. Neurosci. (1)

D. Cheng, H. Kong, W. Pang, H. Yang, H. Lu, C. Huang, and Y. Jiang, “B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia,” Nutr. Neurosci. 19(10), 461–466 (2016).
[Crossref]

Oncol. Lett. (1)

S. Kim, M. Kim, Y. Kim, S. Ahn, K. Kim, K. Kim, W. Kim, J. Lee, J. Cho, and B. Yoo, “Differential levels of L–homocysteic acid and lysophosphatidylcholine (16:0) in sera of patients with ovarian cancer,” Oncol. Lett. 8(2), 566–574 (2014).
[Crossref]

Opt. Express (1)

Phys. Status Solidi B (1)

W. Möller and R. Kaiser, “Impurity induced Raman spectra of NaCl and KCl crystals with various monovalent impurities,” Phys. Status Solidi B 50(1), 155–169 (1972).
[Crossref]

PLoS One (1)

M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia, and S. J. Powis, “The Use of Wavelength Modulated Raman Spectroscopy in Label-Free Identification of T Lymphocyte Subsets, Natural Killer Cells and Dendritic Cells,” PLoS One 10(5), e0125158 (2015).
[Crossref]

Sci. Rep. (1)

V. O. Baron, M. Chen, S. O. Clark, A. Williams, R. J. H. Hammond, K. Dholakia, and S. H. Gillespie, “Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease,” Sci. Rep. 7(1), 9844 (2017).
[Crossref]

Spectrosc. Spect. Anal. (1)

X. Zhang, Z. Yang, W. Li, H. Jia, and J. Wu, “The structure of DL-homocysteic acid in D2O solution,” Spectrosc. Spect. Anal. 20(5), 638–640 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Standard Raman spectra (a, c, e) and wavelength modulated Raman spectra (b, d, f) of HCy solution at a concentration of 0.2 M, HA solution with a concentration of 0.1 M and HT solution at a concentration of 0.1 M. Arrows indicate the most significant Raman peaks at 670 cm$^{-1}$, 1050 cm$^{-1}$ and 690 cm$^{-1}$ for HCy, HA and HT respectively. The dashed line in (b), (d), and (f) shows the zero intensity in wavelength modulated Raman spectra.
Fig. 2.
Fig. 2. Raman peak intensities as a function of concentrations for (a) HCy, (b) HA and (c) HT solution with both axes on the log scale. Blue stars show the peak intensities of wavelength modulation Raman spectra and red circles show the peak intensities of standard Raman spectra at 670 cm$^{-1}$, 1050 cm$^{-1}$ and 690 cm$^{-1}$. Dashed lines shows the linear fits from the experimental data.
Fig. 3.
Fig. 3. Comparison of signal to noise ratio between standard Raman spectra and WMR spectra obtained from (a) HCy, (b) HA, and (c) HT solution. Dashed lines show the linear fits from the experimental data and the slopes of the fitted lines are indicated by the value of $\beta$.

Tables (1)

Tables Icon

Table 1. Typical Raman peaks in HCy, HA and HT solutions. A characteristic Raman peak for each solution were indicated by the bold-font number.

Metrics