Abstract

Highly transparent Dy:CaF2 ceramics with various doping concentrations were fabricated by a hot isostatic pressing (HIP). Their optical properties, emission cross-sections, and saturable absorptivities were evaluated to examine their use as a new candidate 3-μm laser functional medium. Based on those evaluations, we demonstrated passively Q-switched operation of a 2.92-μm Er:YAP laser using a Dy:CaF2 ceramic as a saturable absorber.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Majewski, R. I. Woodward, J. Y. Carree, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
    [Crossref]
  2. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
    [Crossref]
  3. F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
    [Crossref]
  4. S. Heinze, B. Vuillemin, and P. Giroux, “Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions,” Analusis 27(6), 549–551 (1999).
    [Crossref]
  5. C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  6. L. F. Johnson and H. J. Guggenheim, “Laser emission at 3 μm from Dy3+ in BaY2F8,” Appl. Phys. Lett. 23(2), 96–98 (1973).
    [Crossref]
  7. B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).
  8. N. Djeu, V. E. Hartwell, A. A. Kaminskii, and A. V. Butashin, “Room temperature 3.4 μm Dy:BaYb2F8 laser,” Opt. Lett. 22(13), 997–999 (1997).
    [Crossref]
  9. M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
    [Crossref]
  10. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
    [Crossref]
  11. V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
    [Crossref]
  12. N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron. 27(2), 277–282 (1991).
    [Crossref]
  13. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, and P. G. Schunemann, “Room-temperature laser action at 4.3–4.4 μm in CaGa2S4:Dy3+,” Opt. Lett. 24(17), 1215–1217 (1999).
    [Crossref]
  14. H. Jelínková, M. E. Doroshenko, M. Jelínek, J. Šulc, V. V. Osiko, V. V. Badikov, and D. V. Badikov, “Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett. 38(16), 3040–3043 (2013).
    [Crossref]
  15. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
    [Crossref]
  16. H. Uehara, T. Tsunai, B. Han, K. Goya, R. Yasuhara, F. Potemkin, J. Kawanaka, and S. Tokita, “40 kHz, 20 ns acousto-optically Q-switched 4 μm Fe:ZnSe laser pumped by fluoride fiber laser,” Opt. Lett. 45(10), 2788–2791 (2020).
    [Crossref]
  17. P. Aballea, A. Suganuma, F. Druon, J. Hostalrich, P. Georges, P. Gredin, and M. Mortier, “Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process,” Optica 2(4), 288–291 (2015).
    [Crossref]
  18. C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
    [Crossref]
  19. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  20. H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, ““Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics,” Opt. Express 26(3), 3497–3507 (2018).
    [Crossref]
  21. H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara, “Nd3+-activated CaF2 ceramic lasers,” Opt. Lett. 44(13), 3378–3381 (2019).
    [Crossref]
  22. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  23. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  24. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  25. G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
    [Crossref]
  26. H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
    [Crossref]
  27. K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
    [Crossref]
  28. R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photonics 4(2), 020801 (2019).
    [Crossref]
  29. H. Kawase, H. Uehara, H. Chen, and R. Yasuhara, “Passively Q-switched 2.9μm Er:YAP single crystal laser using graphene saturable absorber,” Appl. Phys. Express 12(10), 102006 (2019).
    [Crossref]
  30. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  31. H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
    [Crossref]
  32. G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]
  33. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref]
  34. L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
    [Crossref]

2020 (1)

2019 (7)

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
[Crossref]

H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara, “Nd3+-activated CaF2 ceramic lasers,” Opt. Lett. 44(13), 3378–3381 (2019).
[Crossref]

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photonics 4(2), 020801 (2019).
[Crossref]

H. Kawase, H. Uehara, H. Chen, and R. Yasuhara, “Passively Q-switched 2.9μm Er:YAP single crystal laser using graphene saturable absorber,” Appl. Phys. Express 12(10), 102006 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

2018 (5)

2017 (1)

2016 (1)

2015 (3)

P. Aballea, A. Suganuma, F. Druon, J. Hostalrich, P. Georges, P. Gredin, and M. Mortier, “Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process,” Optica 2(4), 288–291 (2015).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

2014 (1)

2013 (1)

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

1999 (4)

1997 (1)

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1991 (1)

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron. 27(2), 277–282 (1991).
[Crossref]

1986 (1)

1984 (1)

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

1980 (1)

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

1973 (1)

L. F. Johnson and H. J. Guggenheim, “Laser emission at 3 μm from Dy3+ in BaY2F8,” Appl. Phys. Lett. 23(2), 96–98 (1973).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Aballea, P.

Adam, J. L.

Allen, R. E.

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron. 27(2), 277–282 (1991).
[Crossref]

Antipenko, B. M.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Ashkalunin, A. L.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Badikov, D. V.

Badikov, V. V.

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barnes, N. P.

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron. 27(2), 277–282 (1991).
[Crossref]

Benayad, A.

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

Bernier, M.

Bérubé, J. P.

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Bharathan, G.

Brasse, G.

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

Braud, A.

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Braun, B.

Bureau, B.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Butashin, A. V.

Camy, P.

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Carree, J. Y.

Catlow, C. R. A.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Chadwick, A. V.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Chahal, R.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Charpentier, F.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Chen, D. W.

Chen, H.

Djeu, N.

Doroshenko, M. E.

Doualan, J. L.

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Druon, F.

Falconi, M. C.

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Ferrari, M.

Fields, R. A.

Fincher, C. L.

Fluck, R.

Fortin, V.

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
[Crossref]

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Fraser, A.

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Fuerbach, A.

Georges, P.

Gini, E.

Giroux, P.

S. Heinze, B. Vuillemin, and P. Giroux, “Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions,” Analusis 27(6), 549–551 (1999).
[Crossref]

Goya, K.

Greaves, G. N.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Gredin, P.

Guggenheim, H. J.

L. F. Johnson and H. J. Guggenheim, “Laser emission at 3 μm from Dy3+ in BaY2F8,” Appl. Phys. Lett. 23(2), 96–98 (1973).
[Crossref]

Han, B.

Hartwell, V. E.

Heinze, S.

S. Heinze, B. Vuillemin, and P. Giroux, “Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions,” Analusis 27(6), 549–551 (1999).
[Crossref]

Hishinuma, Y.

Hostalrich, J.

Huang, H.

Hudson, D. D.

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photonics 4(2), 020801 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref]

Ikesue, A.

H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara, “Nd3+-activated CaF2 ceramic lasers,” Opt. Lett. 44(13), 3378–3381 (2019).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Jackson, S. D.

Jelínek, M.

Jelínková, H.

Jobin, F.

Johnson, L. F.

L. F. Johnson and H. J. Guggenheim, “Laser emission at 3 μm from Dy3+ in BaY2F8,” Appl. Phys. Lett. 23(2), 96–98 (1973).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

Kawanaka, J.

Kawase, H.

H. Kawase, H. Uehara, H. Chen, and R. Yasuhara, “Passively Q-switched 2.9μm Er:YAP single crystal laser using graphene saturable absorber,” Appl. Phys. Express 12(10), 102006 (2019).
[Crossref]

Keller, U.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Konishi, D.

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, ““Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics,” Opt. Express 26(3), 3497–3507 (2018).
[Crossref]

Krupke, W. F.

Larose, M.

Liu, X.

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Majewski, M. R.

Mak, A. A.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Michel, K.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Mirov, M.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Moizan, V.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Moroney, L. M.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Mortier, M.

Moser, M.

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Moulton, P. F.

Murakami, M.

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, ““Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics,” Opt. Express 26(3), 3497–3507 (2018).
[Crossref]

Muroga, T.

Nazabal, V.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nostrand, M. C.

Noto, H.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Osiko, V. V.

Page, R. H.

Palma, G.

Paschotta, R.

Payne, S. A.

Potemkin, F.

Poulain, M.

Poulain, S.

Prudenzano, F.

Quetel, L.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Rose, T. S.

Sahara, R.

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

Schunemann, P. G.

Shakhkalamyan, G. S.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Shen, D.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shimizu, S.

Sinitsyn, B. V.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Spuhler, G. J.

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Suganuma, A.

Šulc, J.

Taccheo, S.

Tang, D.

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tokita, S.

Tomashevich, Y. V.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Tsunai, T.

Uehara, H.

H. Uehara, T. Tsunai, B. Han, K. Goya, R. Yasuhara, F. Potemkin, J. Kawanaka, and S. Tokita, “40 kHz, 20 ns acousto-optically Q-switched 4 μm Fe:ZnSe laser pumped by fluoride fiber laser,” Opt. Lett. 45(10), 2788–2791 (2020).
[Crossref]

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara, “Nd3+-activated CaF2 ceramic lasers,” Opt. Lett. 44(13), 3378–3381 (2019).
[Crossref]

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

H. Kawase, H. Uehara, H. Chen, and R. Yasuhara, “Passively Q-switched 2.9μm Er:YAP single crystal laser using graphene saturable absorber,” Appl. Phys. Express 12(10), 102006 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, ““Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics,” Opt. Express 26(3), 3497–3507 (2018).
[Crossref]

Vallée, R.

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
[Crossref]

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Vasilyev, S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Vernon, F. L.

Vuillemin, B.

S. Heinze, B. Vuillemin, and P. Giroux, “Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions,” Analusis 27(6), 549–551 (1999).
[Crossref]

Wang, L.

Wang, Y.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Woodward, R. I.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yasuhara, R.

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Zhang, G.

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, J.

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Analusis (1)

S. Heinze, B. Vuillemin, and P. Giroux, “Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions,” Analusis 27(6), 549–551 (1999).
[Crossref]

APL Photonics (1)

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photonics 4(2), 020801 (2019).
[Crossref]

Appl. Phys. Express (3)

H. Kawase, H. Uehara, H. Chen, and R. Yasuhara, “Passively Q-switched 2.9μm Er:YAP single crystal laser using graphene saturable absorber,” Appl. Phys. Express 12(10), 102006 (2019).
[Crossref]

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

K. Goya, H. Uehara, D. Konishi, R. Sahara, M. Murakami, and S. Tokita, “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019).
[Crossref]

Appl. Phys. Lett. (1)

L. F. Johnson and H. J. Guggenheim, “Laser emission at 3 μm from Dy3+ in BaY2F8,” Appl. Phys. Lett. 23(2), 96–98 (1973).
[Crossref]

IEEE J. Quantum Electron. (1)

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron. 27(2), 277–282 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J. P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Kvantovaya Elektron (Moscow) (1)

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Y. V. Tomashevich, and G. S. Shakhkalamyan, “Three micron laser action in Dy3+,” Kvantovaya Elektron (Moscow) 7, 983–987 (1980).

Nature (1)

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direct observations of the dopant environment in fluorites using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Opt. Express (2)

Opt. Lett. (11)

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref]

M. R. Majewski, R. I. Woodward, J. Y. Carree, S. Poulain, M. Poulain, and S. D. Jackson, “Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber,” Opt. Lett. 43(8), 1926–1929 (2018).
[Crossref]

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
[Crossref]

H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara, “Nd3+-activated CaF2 ceramic lasers,” Opt. Lett. 44(13), 3378–3381 (2019).
[Crossref]

H. Uehara, D. Konishi, K. Goya, R. Sahara, M. Murakami, and S. Tokita, “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett. 44(19), 4777–4780 (2019).
[Crossref]

H. Uehara, T. Tsunai, B. Han, K. Goya, R. Yasuhara, F. Potemkin, J. Kawanaka, and S. Tokita, “40 kHz, 20 ns acousto-optically Q-switched 4 μm Fe:ZnSe laser pumped by fluoride fiber laser,” Opt. Lett. 45(10), 2788–2791 (2020).
[Crossref]

N. Djeu, V. E. Hartwell, A. A. Kaminskii, and A. V. Butashin, “Room temperature 3.4 μm Dy:BaYb2F8 laser,” Opt. Lett. 22(13), 997–999 (1997).
[Crossref]

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref]

M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, and P. G. Schunemann, “Room-temperature laser action at 4.3–4.4 μm in CaGa2S4:Dy3+,” Opt. Lett. 24(17), 1215–1217 (1999).
[Crossref]

H. Jelínková, M. E. Doroshenko, M. Jelínek, J. Šulc, V. V. Osiko, V. V. Badikov, and D. V. Badikov, “Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett. 38(16), 3040–3043 (2013).
[Crossref]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref]

Optica (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Proc. SPIE (1)

G. Brasse, J. L. Doualan, A. Benayad, A. Braud, and P. Camy, “Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm,” Proc. SPIE 10683, 1068329 (2018).
[Crossref]

Sens. Actuators, B (1)

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207(A), 518–525 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Transmission spectra and a photograph of the Dy:CaF2 ceramics with various doping concentrations. Dotted line indicates the predicted maximum transmittance of undoped CaF2 crystal.
Fig. 2.
Fig. 2. Absorption (solid line) and scattering (dotted line) coefficient spectra of Dy:CaF2 ceramics with various doping concentrations.
Fig. 3.
Fig. 3. (a) Emission cross-sections for Dy:CaF2 ceramics excited by a 1700-nm laser diode. The absorption cross-section of the 3-at.% sample is plotted as a dashed line. (b) Emission spectrum with 2800-nm excitation measured using a 3100-nm long-pass filter.
Fig. 4.
Fig. 4. Gain cross-section spectra of 6H13/26H15/2 transition for 3 at. % Dy:CaF2 ceramics with the population inversion P ranging from 0 to 1 in interval of 0.1.
Fig. 5.
Fig. 5. Nonlinear transmission of 0.5-at.% Dy:CaF2 ceramic measured by a cw Er:YAP laser at 2920 nm wavelength. Fresnel reflection losses are removed in the plots and a fitting curve is shown as a red line.
Fig. 6.
Fig. 6. Schematic diagram of the setup for a passively Q-switched Er:YAP laser using a Dy:CaF2 ceramic as a saturable absorber.
Fig. 7.
Fig. 7. (a) Typical output temporal waveform for a Q-switched Er:YAP laser with a Dy:CaF2 ceramic SA under 11.7-W pumping. (b) Temporal waveform of a pulse in the pulse train.
Fig. 8.
Fig. 8. Pulse duration and repetition rate for Dy:CaF2 Q-switched Er:YAP laser as a function of pump power.