Abstract

This paper reports on the measurement of a flow-velocity profile using a laser Doppler velocimetry (LDV) system having a focus tunable lens (FTL). In the system, the FTL is installed in the transmitting optics of the LDV; therefore, it can measure the flow velocity profile by changing the measurement position without any mechanical scanning system. To demonstrate the concept of the technique, the velocity profile measurement of Poiseuille flow was conducted, and the measured velocity profile showed good agreement with the theoretical value.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Comte-Bellot, “Hot-wire anemometry,” Annu. Rev. Fluid Mech. 8(1), 209–231 (1976).
    [Crossref]
  2. S. H. Chue, “Pressure probes for fluid measurement,” Prog. Aeronaut. Sci. 16(2), 147–223 (1975).
    [Crossref]
  3. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
    [Crossref]
  4. K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
    [Crossref]
  5. N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
    [Crossref]
  6. D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.
  7. D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.
  8. G. R. Grant and K. L. Orloff, “Two-color dual-beam backscatter laser Doppler velocimeter,” Appl. Opt. 12(12), 2913–2916 (1973).
    [Crossref]
  9. F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
    [Crossref]
  10. P. Sriram, S. Hanagud, J. Craig, and N. M. Komerath, “Scanning laser Doppler technique for velocity profile sensing on a moving surface,” Appl. Opt. 29(16), 2409–2417 (1990).
    [Crossref]
  11. K. Maru, “Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe,” Opt. Express 19(7), 5960–5969 (2011).
    [Crossref]
  12. K. Maru, “Nonmechanical scanning laser Doppler velocimetry for distribution measurements of two-dimensional velocity vectors based on optical quadrature detection,” Appl. Opt. 55(36), 10174–10179 (2016).
    [Crossref]
  13. J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
    [Crossref]
  14. J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
    [Crossref]
  15. D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
    [Crossref]
  16. T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44(13), 2501–2510 (2005).
    [Crossref]
  17. K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
    [Crossref]
  18. A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
    [Crossref]
  19. L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
    [Crossref]
  20. K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
    [Crossref]
  21. M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
    [Crossref]
  22. K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
    [Crossref]
  23. S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
    [Crossref]
  24. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
    [Crossref]
  25. M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
    [Crossref]
  26. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010 (2013).
    [Crossref]
  27. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060 (2013).
    [Crossref]
  28. M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22(16), 19293 (2014).
    [Crossref]
  29. K. Lee, E. Chung, S. Lee, and T. J. Eom, “High-speed dual-layer scanning photoacoustic microscopy using focus tunable lens modulation at resonant frequency,” Opt. Express 25(22), 26427 (2017).
    [Crossref]
  30. T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
    [Crossref]
  31. R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
    [Crossref]
  32. H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
    [Crossref]
  33. H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).
  34. R. J. Cornish, “Flow in pipe of rectangular cross-section,” Proc. R. Soc. Lond. A 120(786), 691–700 (1928).
    [Crossref]
  35. Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
    [Crossref]
  36. W. Kessel, “Measurement uncertainty according to ISO/BIPM-GUM,” Thermochim. Acta 382(1-2), 1–16 (2002).
    [Crossref]

2018 (1)

Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
[Crossref]

2017 (2)

K. Lee, E. Chung, S. Lee, and T. J. Eom, “High-speed dual-layer scanning photoacoustic microscopy using focus tunable lens modulation at resonant frequency,” Opt. Express 25(22), 26427 (2017).
[Crossref]

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

2016 (2)

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

K. Maru, “Nonmechanical scanning laser Doppler velocimetry for distribution measurements of two-dimensional velocity vectors based on optical quadrature detection,” Appl. Opt. 55(36), 10174–10179 (2016).
[Crossref]

2014 (2)

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22(16), 19293 (2014).
[Crossref]

2013 (2)

2012 (2)

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref]

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

2011 (3)

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

K. Maru, “Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe,” Opt. Express 19(7), 5960–5969 (2011).
[Crossref]

2010 (1)

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

2009 (2)

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

2008 (3)

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

2007 (1)

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

2006 (2)

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

2005 (1)

2002 (2)

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

W. Kessel, “Measurement uncertainty according to ISO/BIPM-GUM,” Thermochim. Acta 382(1-2), 1–16 (2002).
[Crossref]

1990 (1)

1981 (1)

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[Crossref]

1976 (1)

G. Comte-Bellot, “Hot-wire anemometry,” Annu. Rev. Fluid Mech. 8(1), 209–231 (1976).
[Crossref]

1975 (1)

S. H. Chue, “Pressure probes for fluid measurement,” Prog. Aeronaut. Sci. 16(2), 147–223 (1975).
[Crossref]

1973 (1)

1964 (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]

1928 (1)

R. J. Cornish, “Flow in pipe of rectangular cross-section,” Proc. R. Soc. Lond. A 120(786), 691–700 (1928).
[Crossref]

Akiguchi, S.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Albrecht, H. E.

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Andoh, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Arik, E.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

Arnold, C. B.

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref]

Aschwanden, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Asundi, A.

Ault, J. T.

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

Bake, F.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Bayer, C.

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

Becker, S.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

Blum, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Borys, M.

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Büeler, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Büttner, L.

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44(13), 2501–2510 (2005).
[Crossref]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

Chen, Q.

Chen, T. H.

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

Chue, S. H.

S. H. Chue, “Pressure probes for fluid measurement,” Prog. Aeronaut. Sci. 16(2), 147–223 (1975).
[Crossref]

Chung, E.

Comte-Bellot, G.

G. Comte-Bellot, “Hot-wire anemometry,” Annu. Rev. Fluid Mech. 8(1), 209–231 (1976).
[Crossref]

Cornish, R. J.

R. J. Cornish, “Flow in pipe of rectangular cross-section,” Proc. R. Soc. Lond. A 120(786), 691–700 (1928).
[Crossref]

Craig, J.

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]

Czarske, J.

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44(13), 2501–2510 (2005).
[Crossref]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

Czarske, J. W.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Damaschke, N.

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Diaspro, A.

Duocastella, M.

M. Duocastella, G. Vicidomini, and A. Diaspro, “Simultaneous multiplane confocal microscopy using acoustic tunable lenses,” Opt. Express 22(16), 19293 (2014).
[Crossref]

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref]

Durst, F.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[Crossref]

Enghardt, L.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Eom, T. J.

Fahrbach, F. O.

Fischer, A.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Fourguette, D.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

Fujii, T.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

Fujii, Y.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Gharib, M.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

Gonzalez, P.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

Grant, G. R.

Grätzel, C.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Hachiga, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Hanagud, S.

Haufe, D.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Helmchen, F.

Higurashi, E.

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Huisken, J.

Ichikawa, Y.

Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
[Crossref]

Ishida, H.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Ishima, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Ito, T.

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Juthanggoon, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Kaneda, S.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

Kessel, W.

W. Kessel, “Measurement uncertainty according to ISO/BIPM-GUM,” Thermochim. Acta 382(1-2), 1–16 (2002).
[Crossref]

Kinoshita, H.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

Komerath, N. M.

König, J.

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

Koochesfahani, M.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

Kuraishi, Y.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Lee, K.

Lee, S.

Lehmann, B.

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[Crossref]

Lienhart, H.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

Lima, R.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

Maru, K.

Modarress, D.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

Morita, N.

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Motosuke, M.

Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
[Crossref]

Müller, H.

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

Neumann, M.

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

Nogami, H.

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Obi, S.

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

Obokata, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Orloff, K. L.

Oshima, M.

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

Pape, N.

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

Pfister, T.

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44(13), 2501–2510 (2005).
[Crossref]

Pietzonka, S.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Pornsuwancharoen, N.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Qu, W.

Razik, T.

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

Sawada, R.

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Schmid, B.

Schulz, A.

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

Shimizu, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Shirai, K.

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44(13), 2501–2510 (2005).
[Crossref]

Shirakawa, H.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Sriram, P.

Stone, H. A.

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

Strunck, V.

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

Sun, B.

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref]

Taugwalder, F.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

Tropea, C.

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[Crossref]

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Tsubota, K.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

Ueyama, K.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Vicidomini, G.

Voigt, A.

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

A. Voigt, C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Laser Doppler field sensor for high resolution flow velocity imaging without camera,” Appl. Opt. 47(27), 5028–5040 (2008).
[Crossref]

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

Voigt, F. F.

Wada, S.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

Wilson, D.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

Yaguchi, Y.

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

Yamaguchi, T.

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

Yamamoto, K.

Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
[Crossref]

Yeh, Y.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]

Yupapin, P.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Zuo, C.

Annu. Rev. Fluid Mech. (1)

G. Comte-Bellot, “Hot-wire anemometry,” Annu. Rev. Fluid Mech. 8(1), 209–231 (1976).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[Crossref]

Eur. J. Mech. B-Fluid. (1)

K. Shirai, C. Bayer, A. Voigt, T. Pfister, L. Büttner, and J. Czarske, “Near-wall measurements of turbulence statistics in a fully developed channel flow with a novel laser Doppler velocity profile sensor,” Eur. J. Mech. B-Fluid. 27(5), 567–578 (2008).
[Crossref]

Exp. Fluids (4)

L. Büttner, C. Bayer, A. Voigt, J. Czarske, H. Müller, N. Pape, and V. Strunck, “Precise flow rate measurements of natural gas under high pressure with a laser Doppler velocity profile sensor,” Exp. Fluids 45(6), 1103–1115 (2008).
[Crossref]

K. Shirai, Y. Yaguchi, L. Büttner, J. Czarske, and S. Obi, “Highly spatially resolving laser Doppler velocity measurements of the tip clearance flow inside a hard disk drive model,” Exp. Fluids 50(3), 573–586 (2011).
[Crossref]

T. H. Chen, J. T. Ault, H. A. Stone, and C. B. Arnold, “High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry,” Exp. Fluids 58(5), 41 (2017).
[Crossref]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne lase-Doppler velocity profile sensor,” Exp. Fluids 40(3), 473–481 (2006).
[Crossref]

Flow Meas. Instrum. (1)

M. Neumann, K. Shirai, L. Büttner, and J. Czarske, “Two-point correlation estimation of turbulent shear flows using a novel laser Doppler velocity profile sensor,” Flow Meas. Instrum. 20(6), 252–263 (2009).
[Crossref]

J. Biomed. Opt. (1)

M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt. 17(5), 050505 (2012).
[Crossref]

J. Microelectromech Syst. (1)

N. Morita, H. Nogami, E. Higurashi, T. Ito, and R. Sawada, “Development of a built-in micro-laser Doppler velocimeter,” J. Microelectromech Syst. 25(2), 380–387 (2016).
[Crossref]

Lab Chip (1)

H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007).
[Crossref]

Meas. Sci. Technol. (5)

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[Crossref]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

D. Haufe, S. Pietzonka, A. Schulz, F. Bake, L. Enghardt, J. W. Czarske, and A. Fischer, “Aeroacoustic near-field measurements with microscale resolution,” Meas. Sci. Technol. 25(10), 105301 (2014).
[Crossref]

R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol. 17(4), 797–808 (2006).
[Crossref]

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Microfluid. Nanofluid. (1)

Y. Ichikawa, K. Yamamoto, and M. Motosuke, “Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field,” Microfluid. Nanofluid. 22(7), 73 (2018).
[Crossref]

Opt. Express (5)

Phys. Procedia (1)

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocimeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[Crossref]

Proc. R. Soc. Lond. A (1)

R. J. Cornish, “Flow in pipe of rectangular cross-section,” Proc. R. Soc. Lond. A 120(786), 691–700 (1928).
[Crossref]

Proc. SPIE (1)

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Prog. Aeronaut. Sci. (1)

S. H. Chue, “Pressure probes for fluid measurement,” Prog. Aeronaut. Sci. 16(2), 147–223 (1975).
[Crossref]

Rev. Sci. Instrum. (1)

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[Crossref]

Thermochim. Acta (1)

W. Kessel, “Measurement uncertainty according to ISO/BIPM-GUM,” Thermochim. Acta 382(1-2), 1–16 (2002).
[Crossref]

Other (3)

H. E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

D. Fourguette, D. Modarress, F. Taugwalder, D. Wilson, M. Koochesfahani, and M. Gharib, “Miniature and MOEMS flow sensors,” in Proceedings of 15th AIAA Computational Fluid Dynamics Conference (2001), AIAA2001–2982.

D. Fourguette, P. Gonzalez, D. Modarress, E. Arik, D. Wilson, and M. Koochesfahani, “Optical measurement of wall shear stress with emphasis on flows near separation,” in Proceedings of 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (2004), AIAA2004–2394.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of the experimental setup. The width of the parallel plate channel is W = 120 mm (for the y-direction). The FT-LDV system was controlled by a PC.
Fig. 2.
Fig. 2. Schematics about the location of the transmitting lens (TL) and focus tunable lens (FTL). The laser beams pass two lenses and cross with the angle of θcr. In the measurement probe where two beams cross, the fringe space ΔxFT is formed.
Fig. 3.
Fig. 3. Schematics of the apparatus for the calibration procedure.
Fig. 4.
Fig. 4. (a) Calibration curve between fFTL and ΔxFT. The dashed line corresponds to the fitting curve indicated as Eq. (5). (b) Relationship between fFTL and BFL and between fFTL and z/H.
Fig. 5.
Fig. 5. Streamwise velocity distribution ux ave/Uref in a parallel plate channel in the depth direction obtained by the FT-LDV. The theoretical calculations are also shown.
Fig. 6.
Fig. 6. Comparison between the value of uncertainty U(ux) analyzed by utilizing Eq. (8) and Δux that corresponds to the differences between the measured velocity and theoretical ones indicated in Fig. 5.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u x = f Δ x FT ,
Δ x FT = λ 2 sin ( θ cr / θ cr 2 2 ) .
θ cr = 2 tan 1 [ ( Δ s FTL / Δ s FTL 2 2 ) f FTL + A B f FTL ] ,
BFL =  B f FTL f FTL + ( 2 / 2 Δ s FTL Δ s FTL ) A .
Δ x FT = λ 2 sin ( θ cr / θ cr 2 2 ) = λ 2 sin { tan 1 [ ( Δ s FTL / Δ s FTL 2 2 ) f FTL + A B f FTL ] } .
u x = 1 2 ( d P d x ) z ( H z ) 4 H 2 π 3 μ ( d P d x ) n , odd [ 1 n 3 sin ( n π z H ) cosh ( n π y H ) cosh ( n π W 2 H ) ] ,
Q = W H 3 12 μ ( d P d x ) [ 1 192 π 5 H W n , odd 1 n 5 tanh ( n π W 2 H ) ] .
U ( u x ) = C ( f ) 2 U ( f ) 2 + C ( Δ x FT ) 2 U ( Δ x FT ) 2 = ( Δ x FT ) 2 U ( f ) 2 + ( f ) 2 U ( Δ x FT ) 2 ,