Abstract

In this work, we present the realization of a high-phase diffractive axicon. For that purpose, we use a spatial light modulator that exhibits 10π phase modulation. We compare the results with standard diffractive axicons that exhibit 2π phase modulation. We show that high-phase modulation axicons generate Bessel beams with a shorter range and a smaller radius than standard axicons with the same period. We also find that the higher phase modulation regime provides improved diffraction efficiency since fringing effects are reduced. Therefore, dynamic control of Bessel beams is presented, controlled through the phase modulation dynamic range.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
    [Crossref]
  2. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  3. F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
    [Crossref]
  4. B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
    [Crossref]
  5. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  6. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref]
  7. J. H. McLeod, “The axicon: a new type of element,” J. Opt. Soc. Am. 44(8), 592 (1954).
    [Crossref]
  8. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32(31), 6368 (1993).
    [Crossref]
  9. Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
    [Crossref]
  10. A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21(1), 165 (2013).
    [Crossref]
  11. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffractive interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35(4), 599 (1996).
    [Crossref]
  12. B. K. Gutierrez, J. A. Davis, I. Moreno, and D. M. Cottrell, “Encoding lenses with focal lengths lower than the Nyquist limit using high phase-modulation displays,” Opt. Lett. 44(13), 3398 (2019).
    [Crossref]
  13. I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
    [Crossref]
  14. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27(19), 3959 (1988).
    [Crossref]
  15. C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877 (2013).
    [Crossref]
  16. T. Lu, M. Pivnenko, B. Robertson, and D. Chu, “Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device,” Appl. Opt. 54(19), 5903 (2015).
    [Crossref]
  17. V. Calero, P. Garcia-Martinez, J. Albero, M. M. Sanchez-Lopez, and I. Moreno, “Liquid-crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663 (2013).
    [Crossref]
  18. T. Cizmar and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558 (2009).
    [Crossref]
  19. L. Teng, M. Pivnenko, B. Robertson, R. Zhang, and D. Chu, “A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators,” Opt. Express 22(21), 26392 (2014).
    [Crossref]
  20. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
    [Crossref]
  21. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496 (2007).
    [Crossref]

2020 (1)

I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
[Crossref]

2019 (2)

B. K. Gutierrez, J. A. Davis, I. Moreno, and D. M. Cottrell, “Encoding lenses with focal lengths lower than the Nyquist limit using high phase-modulation displays,” Opt. Lett. 44(13), 3398 (2019).
[Crossref]

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

2015 (1)

2014 (1)

2013 (4)

2009 (1)

2008 (1)

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
[Crossref]

2007 (1)

2005 (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

2004 (1)

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

1996 (1)

1993 (1)

1988 (1)

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

1954 (1)

Ahn, J.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Albero, J.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Bhuyan, M. K.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Burvall, A.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Calero, V.

Carcole, E.

Chiu, D. T.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
[Crossref]

Chu, D.

Cizmar, T.

Climent, V.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Cottrell, D. M.

Courvoisier, F.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Davis, J. A.

Dholakia, K.

T. Cizmar and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558 (2009).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Dudley, A.

Dudley, J. M.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Duran, V.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Forbes, A.

Friberg, A. T.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27(19), 3959 (1988).
[Crossref]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Garcia-Martinez, P.

Guertin, J.

Gutierrez, B. K.

I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
[Crossref]

B. K. Gutierrez, J. A. Davis, I. Moreno, and D. M. Cottrell, “Encoding lenses with focal lengths lower than the Nyquist limit using high phase-modulation displays,” Opt. Lett. 44(13), 3398 (2019).
[Crossref]

Haist, T.

Hands, P. J. W.

Jacquot, M.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Jaroszewicz, Z.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Jeffries, G. D. M.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
[Crossref]

Jeon, S.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Khanal, H. P.

I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
[Crossref]

Kim, C.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Kim, H. H.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Kirby, A. K.

Kolodziejczyk, A.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Lancis, J.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Lavery, M.

Lee, H.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Lingel, C.

Love, G. D.

Lu, T.

McDonald, A.

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

McLeod, J. H.

Mhlanga, T.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Milne, G.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
[Crossref]

Moreno, I.

Osten, W.

Padgett, M.

Park, B.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

Pivnenko, M.

Robertson, B.

Roux, F. S.

Sanchez-Lopez, M. M.

I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
[Crossref]

V. Calero, P. Garcia-Martinez, J. Albero, M. M. Sanchez-Lopez, and I. Moreno, “Liquid-crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663 (2013).
[Crossref]

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Teng, L.

Turunen, J.

Vasara, A.

Zhang, J.

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Zhang, R.

Appl. Opt. (5)

Appl. Phys. A (1)

F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112(1), 29–34 (2013).
[Crossref]

Appl. Phys. Lett. (1)

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92(26), 261101 (2008).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

J. Biophotonics (1)

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12(2), e201800215 (2019).
[Crossref]

J. Mod. Opt. (1)

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Opt. Express (4)

Opt. Laser Eng. (1)

I. Moreno, B. K. Gutierrez, M. M. Sanchez-Lopez, J. A. Davis, H. P. Khanal, and D. M. Cottrell, “Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulator,” Opt. Laser Eng. 126, 105910 (2020).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Diagram of the experimental setup. (b)-(c) Expanded gray-level pattern for axicons with (c) M=1 and (c) M=5. The gray level histogram is shown under each pattern.
Fig. 2.
Fig. 2. Intensity versus propagation distance for Bessel beams generated by: (a) axicons with constant p/M ratio and phase depths M=1, M=2 and M=4; (b) axicons of period p=16 and phase depths M=1 through 5.
Fig. 3.
Fig. 3. Transverse images for Bessel beams generated with axicons of period p=16 and phase depths M=1 through 5 captured at various distances along the optical axis.
Fig. 4.
Fig. 4. Widths of Bessel beams produced by an axicon of period p=32 and phase depth (a) M=1, (b) M=2, (c) M=3, (d) M=4 and (e) M=5.

Tables (2)

Tables Icon

Table 1. Theoretical and experimental bessel beam maximum range (zmax) a.

Tables Icon

Table 2. Theoretical and Experimental Bessel Beam Widthsa.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ sin θ = M λ r 0 ,
z max = R max tan θ R max θ ,
z max = r 0 λ M N Δ 2 = p N Δ 2 2 λ M .
w = 4.81 k θ = 0.766 λ θ .
w = 0.766 r 0 M = 0.766 p Δ M .