Abstract

We report the design of broadband highly reflective subwavelength high-index-contrast gratings (HCGs) for both TE and TM polarizations in the visible regime. Results show that high reflectivity above 99% covering 544–726 nm or 510–666 nm can be achieved, corresponding to a fractional bandwidth of Δλ/λ0 = 28.7% or 26.5% for the TM or TE polarization, respectively. We reveal that these broad high-reflectivity bands originate from a blend of multiple leaky modes, similar to the counterparts operating in the near-infrared regime. By investigating the effects of the grating height, period, and width, we find that the broadband high reflectivity requires careful optimization. We expect that this work will advance the engineering of broadband HCG reflectors and promote their applications in the visible regime.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Wang and L. Gallais, “A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications,” Opt. Express 21(12), 14698–14711 (2013).
    [Crossref]
  2. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  3. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  4. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  5. C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
    [Crossref]
  6. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  7. P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
    [Crossref]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  9. S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
    [Crossref]
  10. I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
    [Crossref]
  11. E. Haglund, J. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
    [Crossref]
  12. M. Gebski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27(5), 7139–7146 (2019).
    [Crossref]
  13. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [Crossref]
  14. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
    [Crossref]
  15. T. Sun, W. Yang, and C. J. Chang-Hasnain, “Surface-normal coupled four-wave mixing in a high contrast gratings resonator,” Opt. Express 23(23), 29565–29572 (2015).
    [Crossref]
  16. B. Hogan, L. Lewis, M. McAuliffe, and S. P. Hegarty, “Mid-infrared optical sensing using sub-wavelength gratings,” Opt. Express 27(3), 3169 (2019).
    [Crossref]
  17. G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
    [Crossref]
  18. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [Crossref]
  19. A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
    [Crossref]
  20. E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
    [Crossref]
  21. Y. Yao and W. Wu, “All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
    [Crossref]
  22. S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
    [Crossref]
  23. D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
    [Crossref]
  24. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  25. “Refractive index of TiO2-rutile,” https://www.filmetrics.com/refractive-index-database/TiO2+-+Rutile .
  26. M. Shokooh-Saremi and R. Magnusson, “Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
    [Crossref]
  27. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref]
  28. T. Khaleque, M. J. Uddin, and R. Magnusson, “Design and fabrication of broadband guided-mode resonant reflectors in TE polarization,” Opt. Express 22(10), 12349–12358 (2014).
    [Crossref]

2019 (3)

2018 (2)

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

2017 (1)

Y. Yao and W. Wu, “All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

2016 (1)

2015 (3)

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

T. Sun, W. Yang, and C. J. Chang-Hasnain, “Surface-normal coupled four-wave mixing in a high contrast gratings resonator,” Opt. Express 23(23), 29565–29572 (2015).
[Crossref]

2014 (2)

T. Khaleque, M. J. Uddin, and R. Magnusson, “Design and fabrication of broadband guided-mode resonant reflectors in TE polarization,” Opt. Express 22(10), 12349–12358 (2014).
[Crossref]

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

2013 (1)

2012 (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

2010 (3)

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]

A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
[Crossref]

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1995 (1)

Ahmed, A.

A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
[Crossref]

Bakir, B. B.

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Bengtsson, J.

E. Haglund, J. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Boutami, S.

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Caliman, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Cao, D. Z.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Carlsson, S.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Chang-Hasnain, C. J.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

T. Sun, W. Yang, and C. J. Chang-Hasnain, “Surface-normal coupled four-wave mixing in a high contrast gratings resonator,” Opt. Express 23(23), 29565–29572 (2015).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
[Crossref]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Chen, L.

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Chen, Y. L.

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Chung, I.-S.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Czyszanowski, T.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Fattal, D.

Gallais, L.

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Gaylord, T. K.

Gebski, M.

Gordon, R.

A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
[Crossref]

Grann, E. B.

Gustavsson, J.

Gustavsson, J. S.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Haglund, Å.

E. Haglund, J. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref]

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Haglund, E.

Hashemi, E.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

He, S.

S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
[Crossref]

Hegarty, S. P.

Hogan, B.

Huang, M.

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Huang, M. C. Y.

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Iakovlev, V.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Kapon, E.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Karagodsky, V.

Kern, J.

Khaleque, T.

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Larsson, A.

Leclercq, J.-L.

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Lewis, L.

Li, W.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Liscidini, M.

A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
[Crossref]

Liu, Q.

S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
[Crossref]

Liu, Y. Z.

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Lott, J. A.

Luan, C. N.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Ma, J.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Magnusson, R.

Mateus, C.

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

McAuliffe, M.

Mereuta, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Moewe, M.

Moharam, M. G.

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Mørk, J.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Pesala, B.

Pommet, D. A.

Qiao, P.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

Rossbach, G.

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Sa, T.

S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
[Crossref]

Sedgwick, F. G.

Shen, L. Y.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Shokooh-Saremi, M.

Sirbu, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Sorin, W.

Su, W.

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Sun, T.

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Tan, M.

Uddin, M. J.

Valentine, J.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Viktorovitch, P.

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Wang, B.

Wang, Z.

S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
[Crossref]

Wu, W.

Y. Yao and W. Wu, “All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

Xiao, H. D.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Xu, L. H.

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Yang, W.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

T. Sun, W. Yang, and C. J. Chang-Hasnain, “Surface-normal coupled four-wave mixing in a high contrast gratings resonator,” Opt. Express 23(23), 29565–29572 (2015).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Yang, X. K.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Yao, Y.

Y. Yao and W. Wu, “All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

Zhao, C. C.

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Zheng, G. G.

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Zhou, Y.

ACS Photonics (1)

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Yao and W. Wu, “All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector,” Adv. Opt. Mater. 5(14), 1700090 (2017).
[Crossref]

Adv. Opt. Photonics (2)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

AIP Adv. (1)

S. He, Q. Liu, T. Sa, and Z. Wang, “Design of broadband reflector at the visible wavelengths using particle swarm optimization,” AIP Adv. 9(7), 075301 (2019).
[Crossref]

Appl. Phys. Lett. (1)

S. Boutami, B. B. Bakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband mems-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

IEEE Photonics J. (1)

A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics J. 2(6), 884–893 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. Mateus, M. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

E. Hashemi, J. Bengtsson, J. S. Gustavsson, S. Carlsson, G. Rossbach, and Å. Haglund, “TiO2 membrane high-contrast grating reflectors for vertical-cavity light-emitters in the visible wavelength regime,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(5), 050603 (2015).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Opt. Commun. (1)

G. G. Zheng, Y. L. Chen, L. H. Xu, W. Su, and Y. Z. Liu, “High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings,” Opt. Commun. 318, 57–60 (2014).
[Crossref]

Opt. Express (11)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[Crossref]

M. Shokooh-Saremi and R. Magnusson, “Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
[Crossref]

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]

B. Wang and L. Gallais, “A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications,” Opt. Express 21(12), 14698–14711 (2013).
[Crossref]

T. Khaleque, M. J. Uddin, and R. Magnusson, “Design and fabrication of broadband guided-mode resonant reflectors in TE polarization,” Opt. Express 22(10), 12349–12358 (2014).
[Crossref]

T. Sun, W. Yang, and C. J. Chang-Hasnain, “Surface-normal coupled four-wave mixing in a high contrast gratings resonator,” Opt. Express 23(23), 29565–29572 (2015).
[Crossref]

E. Haglund, J. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref]

B. Hogan, L. Lewis, M. McAuliffe, and S. P. Hegarty, “Mid-infrared optical sensing using sub-wavelength gratings,” Opt. Express 27(3), 3169 (2019).
[Crossref]

M. Gebski, J. A. Lott, and T. Czyszanowski, “Electrically injected VCSEL with a composite DBR and MHCG reflector,” Opt. Express 27(5), 7139–7146 (2019).
[Crossref]

Photonics Res. (1)

D. Z. Cao, X. K. Yang, L. Y. Shen, C. C. Zhao, C. N. Luan, J. Ma, and H. D. Xiao, “Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors,” Photonics Res. 6(12), 1144 (2018).
[Crossref]

Proc. SPIE (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Other (1)

“Refractive index of TiO2-rutile,” https://www.filmetrics.com/refractive-index-database/TiO2+-+Rutile .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of a TiO$_2$/air HCG with a SiO$_2$ substrate. $h$, $w$, and $p$ are the grating bar height, width, and period, respectively. $d$ is the distance between the HCG grating bars and the SiO$_2$ substrate. Plane wave light with TM (polarized in $x$ direction) or TE (polarized in $y$ direction) polarization normally impinges onto the grating.
Fig. 2.
Fig. 2. Zeroth-order reflectance and transmittance spectra on (a) linear and (b) logarithmic scales of the optimal HCG-based broadband reflector for TM polarization. The optimized design parameters are $h=241$ nm, $p=360$ nm and $w/p=0.69$. The three dips locating at $\lambda =561$ nm, 631 nm and 697 nm correspond to almost perfect (near 100%) reflection.
Fig. 3.
Fig. 3. Magnetic field distributions at (a)–(c) three wavelengths off the transmittance dips and (d)–(f) the three wavelengths of the transmittance dips in Fig. 2: (a) $\lambda =473$ nm for $T_0\approx 1$, (b) 600 nm and (c) 658 nm for the two transmittance peaks between the three dips, (d) 561 nm, (e) 631 nm, and (f) 697 nm. $|H_{0y}|$ is the magnetic field amplitude of the incident plane wave. The high-index TiO$_2$ bars are outlined by pink squares.
Fig. 4.
Fig. 4. Dependence of calculated reflectance spectra for TM polarization on (a) bar height (b) period, and (c) duty cycle. (d)–(f) Associated transmittance spectra on a logarithmic scale. The horizontal dashed lines indicate the optimized design parameters used in Fig. 2. The white solid curves indicates the 99% contour.
Fig. 5.
Fig. 5. (a) Zeroth-order reflectance and transmittance spectra on both linear and logarithmic scales of an optimal HCG broadband reflector for TE polarization. The optimized design parameters are $h=129$ nm, $p=510$ nm and $w/p=0.45$. (b)-(d) Dependence of reflectivity spectra on (a) bar height (b) period, and (c) duty cycle. The horizontal dashed lines indicate the optimized design parameters used in (a). The white solid curves indicates the 99% contour.