Abstract

In-plane lenses are desired for light manipulation within on-chip platforms. Such an in-plane lens can be achieved through optofluidic lens technologies that provide tunability of optical parameters through alterations to the shape or size of the lens. However, passive optofluidic lenses are often more desirable than active optofluidic lenses. In this work, we design a passive mechanically-tuned optofluidic lens. Tunability is brought about by placing a microdroplet between two substrate plates and varying the plate separation. We carry out analyses with an experimental optical setup and theoretical ray tracing. The experimental optical setup makes use of a fluorescent dye filler fluid to assist in the visualization and measurement of the back focal length. Ultimately, the sensitivity of the back focal length to a change in plate separation is shown, with strong agreement between experimental and theoretical analyses. It is envisioned that such a mechanically-tuned optofluidic lens will be used in a myriad of in-plane optical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic lenses with horizontal-to-vertical aspect ratios in the subunit regime

Shravani Prasad, Michelle Del Rosso, Julie R. Vale, and Christopher M. Collier
Appl. Opt. 57(19) 5474-5482 (2018)

Dielectrophoresis-actuated in-plane optofluidic lens with tunability of focal length from negative to positive

Qingming Chen, Tenghao Li, Yujiao Zhu, Weixing Yu, and Xuming Zhang
Opt. Express 26(6) 6532-6541 (2018)

Numerical analysis of electrically tunable aspherical optofluidic lenses

Kartikeya Mishra and Frieder Mugele
Opt. Express 24(13) 14672-14681 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. U. Murade, D. van der Ende, and F. Mugele, “High Speed Adaptive Liquid Microlens Array,” Opt. Express 20(16), 18180 (2012).
    [Crossref]
  2. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
    [Crossref]
  3. X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
    [Crossref]
  4. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
    [Crossref]
  5. P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
    [Crossref]
  6. Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
    [Crossref]
  7. Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
    [Crossref]
  8. Q. Yuan and J. Wu, “Thermally Biased AC Electrokinetic Pumping Effect For Lab-On-A-Chip Based Delivery Of Biofluids,” Biomed. Microdevices 15(1), 125–133 (2013).
    [Crossref]
  9. A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
    [Crossref]
  10. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
    [Crossref]
  11. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
    [Crossref]
  12. S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Escape from an optoelectronic tweezer trap: experimental results and simulations,” Opt. Express 26(5), 5300–5309 (2018).
    [Crossref]
  13. C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
    [Crossref]
  14. I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
    [Crossref]
  15. S. Prasad, M. Del Rosso, J. Vale, and C. M. Collier, “Optofluidic Lenses With Horizontal-To-Vertical Aspect Ratios In The Subunit Regime,” Appl. Opt. 57(19), 5474–5482 (2018).
    [Crossref]
  16. Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
    [Crossref]
  17. Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
    [Crossref]
  18. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
    [Crossref]
  19. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
    [Crossref]
  20. M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
    [Crossref]
  21. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
    [Crossref]
  22. C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
    [Crossref]
  23. K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
    [Crossref]
  24. Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
    [Crossref]
  25. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  26. J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
    [Crossref]
  27. C. Fang, B. Dai, Q. Xu, R. Zhou, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically Reconfigurable Optofluidic Microlens With Continuous Shape Tuning From Biconvex To Biconcave,” Opt. Express 25(2), 888 (2017).
    [Crossref]
  28. B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
    [Crossref]
  29. S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  30. Q. Chen, T. Li, W. Yu, and X. Zhang, “Dielectrophoresis-Actuated In-Plane Optofluidic Lens With Tunability Of Focal Length From Negative To Positive,” Opt. Express 26(6), 6532 (2018).
    [Crossref]
  31. Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
    [Crossref]
  32. S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).
  33. S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
    [Crossref]
  34. S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
    [Crossref]
  35. H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
    [Crossref]
  36. R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [Crossref]
  37. K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
    [Crossref]
  38. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  39. R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
    [Crossref]
  40. J. E. Greivenkamp, “Field guide to geometrical optics,” SPIE Publishing.
  41. R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays,” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1211–1220 (2016).
  42. D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
    [Crossref]

2019 (2)

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

2018 (7)

Q. Chen, T. Li, W. Yu, and X. Zhang, “Dielectrophoresis-Actuated In-Plane Optofluidic Lens With Tunability Of Focal Length From Negative To Positive,” Opt. Express 26(6), 6532 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Escape from an optoelectronic tweezer trap: experimental results and simulations,” Opt. Express 26(5), 5300–5309 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

S. Prasad, M. Del Rosso, J. Vale, and C. M. Collier, “Optofluidic Lenses With Horizontal-To-Vertical Aspect Ratios In The Subunit Regime,” Appl. Opt. 57(19), 5474–5482 (2018).
[Crossref]

2017 (2)

C. Fang, B. Dai, Q. Xu, R. Zhou, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically Reconfigurable Optofluidic Microlens With Continuous Shape Tuning From Biconvex To Biconcave,” Opt. Express 25(2), 888 (2017).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

2016 (2)

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

2015 (2)

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

2013 (3)

Q. Yuan and J. Wu, “Thermally Biased AC Electrokinetic Pumping Effect For Lab-On-A-Chip Based Delivery Of Biofluids,” Biomed. Microdevices 15(1), 125–133 (2013).
[Crossref]

K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
[Crossref]

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

2012 (5)

C. U. Murade, D. van der Ende, and F. Mugele, “High Speed Adaptive Liquid Microlens Array,” Opt. Express 20(16), 18180 (2012).
[Crossref]

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
[Crossref]

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

2011 (6)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

2010 (7)

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref]

2009 (2)

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

2007 (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Aksit, K.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Albert, R.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Ameen, A.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Asundi, A. K.

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bishara, W.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Born, B.

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
[Crossref]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Cerullo, G.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Chakravarthula, P.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Chamberlain, M. D.

Chang, T.-W.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Chao, K.-S.

K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
[Crossref]

Chen, H. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

Chen, Q.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

Q. Chen, T. Li, W. Yu, and X. Zhang, “Dielectrophoresis-Actuated In-Plane Optofluidic Lens With Tunability Of Focal Length From Negative To Positive,” Opt. Express 26(6), 6532 (2018).
[Crossref]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Chen, S.

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

Chen, T.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Chen, Y.

Cheng, H.

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Chiang, I. K.

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

Collier, C. M.

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

S. Prasad, M. Del Rosso, J. Vale, and C. M. Collier, “Optofluidic Lenses With Horizontal-To-Vertical Aspect Ratios In The Subunit Regime,” Appl. Opt. 57(19), 5474–5482 (2018).
[Crossref]

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Cooper, E. A.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays,” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1211–1220 (2016).

Dai, B.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Del Rosso, M.

Didyk, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Ding, X.

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

Dongre, C.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Dunn, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Erickson, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Fainman, Y.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

Fang, C.

Fang, Q.

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Fang, X.

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

Fei, P.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Flood, A. G.

Freeman, L. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

Fuchs, H.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Giessen, H.

Girijac, C. R.

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

Gissibl, T.

Greivenkamp, J. E.

J. E. Greivenkamp, “Field guide to geometrical optics,” SPIE Publishing.

Guo, T.

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Hao, R.

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

He, Z.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Holzman, J. F.

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

Holzman, J. R.

B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
[Crossref]

Hsiao, A.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Hsu, H.-Y.

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

Huang, H.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

Huang, T. J.

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

Huang, Y.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Ismail, D.

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

Jaffar, N.

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

Jamshidi, A.

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

Jeong, Y.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Jian, A.

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Jiang, X.

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

Juvert, J.

Kedenburg, S.

Kellnhofer, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Kherani, N. P.

Kong, J.

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

Konrad, R.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays,” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1211–1220 (2016).

Kottam, N.

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

Landry, E. L.

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
[Crossref]

Lapsley, M. I.

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

Lee, H. P.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
[Crossref]

Levi, S.

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Li, T.

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Q. Chen, T. Li, W. Yu, and X. Zhang, “Dielectrophoresis-Actuated In-Plane Optofluidic Lens With Tunability Of Focal Length From Negative To Positive,” Opt. Express 26(6), 6532 (2018).
[Crossref]

Li, Z.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Liang, L.

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Lim, S. P.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
[Crossref]

Lin, M.-S.

K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
[Crossref]

Lin, S.-C. S.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

Liu, G. L.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Liu, L.

Liu, Y.

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

Long, J.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Lu, C.

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

Luebke, D.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Luong, T.-D.

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Men, Y.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Min Oh, J.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High Speed Adaptive Liquid Microlens Array,” Opt. Express 20(16), 18180 (2012).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Murade, C. U.

Myszkowski, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Nagabhushana, B. M.

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

Nagarajaa, R.

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

Neale, S. L.

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Escape from an optoelectronic tweezer trap: experimental results and simulations,” Opt. Express 26(5), 5300–5309 (2018).
[Crossref]

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

Nguyen, N.-T.

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

Nichols, J.

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

Nikitina, A.

Nolli, D.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Osellame, R.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Ozcan, A.

Pang, L.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

Pei, S.

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

Pollnau, M.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Prasad, S.

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Ramponi, R.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Ranjan Gartia, M.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Rathinavel, K.

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Ren, H.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Schmidt, H.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Seow, Y. C.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
[Crossref]

Shi, J.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

Shi, Y.

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Song, C.

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

Spotts, I.

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

Stratton, Z.

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

Tan, S.-H.

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

Tippets, C.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Torell, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

Vale, J.

Valley, J. K.

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

van der Ende, D.

van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Vasquez, R. M.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Vieweg, M.

Vlekkert, H.

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

Wang, Q.

Wang, X.

Watts, B. R.

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Wetzstein, G.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays,” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1211–1220 (2016).

Wheeler, A. R.

Wiltshire, M.

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Wu, J.

Q. Yuan and J. Wu, “Thermally Biased AC Electrokinetic Pumping Effect For Lab-On-A-Chip Based Delivery Of Biofluids,” Biomed. Microdevices 15(1), 125–133 (2013).
[Crossref]

Wu, M. C.

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

Wu, S.

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

Wu, S.-T.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Xu, C.

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Xu, Q.

Xu, S.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref]

Xu, Z.

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

Yang, H.

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

Yang, R.-J.

K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
[Crossref]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yang, Y.

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Yap, Y. F.

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yu, W.

Yuan, Q.

Q. Yuan and J. Wu, “Thermally Biased AC Electrokinetic Pumping Effect For Lab-On-A-Chip Based Delivery Of Biofluids,” Biomed. Microdevices 15(1), 125–133 (2013).
[Crossref]

Zhang, D.

Zhang, S.

Zhang, X.

Q. Chen, T. Li, W. Yu, and X. Zhang, “Dielectrophoresis-Actuated In-Plane Optofluidic Lens With Tunability Of Focal Length From Negative To Positive,” Opt. Express 26(6), 6532 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Zhang, Y.

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Escape from an optoelectronic tweezer trap: experimental results and simulations,” Opt. Express 26(5), 5300–5309 (2018).
[Crossref]

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Zhang, Z.

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Zheng, C.

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

Zhou, R.

Zhu, H.

Zhu, X.

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Zuo, Y.

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Anal. Chem. (1)

X. Fang, Y. Liu, J. Kong, and X. Jiang, “Loop-Mediated Isothermal Amplification Integrated On Microfluidic Chips For Point-Of-Care Quantitative Detection Of Pathogens,” Anal. Chem. 82(7), 3002–3006 (2010).
[Crossref]

Appl. Opt. (1)

Biomed. Microdevices (1)

Q. Yuan and J. Wu, “Thermally Biased AC Electrokinetic Pumping Effect For Lab-On-A-Chip Based Delivery Of Biofluids,” Biomed. Microdevices 15(1), 125–133 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. van Thourhout, and R. Baets, “Silicon-On-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

IEEE Photonics J. (1)

B. Born, E. L. Landry, and J. R. Holzman, “Electrodispensing Of Microspheroids For Lateral Refractive And Reflective Photonic Elements,” IEEE Photonics J. 2(6), 873–883 (2010).
[Crossref]

IEEE Trans. Visual. Comput. Graphics (2)

K. Aksit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing Application-Driven Foveated Near-Eye Displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-ThroughDeformable Membrane Mirrors,” IEEE Trans. Visual. Comput. Graphics 23(4), 1322–1331 (2017).
[Crossref]

J. Nanomater. (1)

A. Ameen, M. Ranjan Gartia, A. Hsiao, T.-W. Chang, Z. Xu, and G. L. Liu, “Ultra-Sensitive Colorimetric Plasmonic Sensing And Microfluidics For Biofluid Diagnostics Using Nanohole Array,” J. Nanomater. 2015, 1–21 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically Tunable Optofluidic Devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Lab Chip (9)

Q. Chen, T. Li, Z. Li, C. Lu, and X. Zhang, “Dielectrophoresis-actuated liquid lenses with dualair/liquid interfaces tuned from biconcave to biconvex,” Lab Chip 18(24), 3849–3854 (2018).
[Crossref]

R. M. Vasquez, R. Osellame, D. Nolli, C. Dongre, H. Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling And Optimization Of Micro Optofluidic Lenses,” Lab Chip 9(9), 1178 (2009).
[Crossref]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic Tunable Lenses Using Laser-Induced Thermal Gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref]

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic Variable-Focus Lenses For Light Manipulation,” Lab Chip 12(19), 3810 (2012).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic Devices And Applications In Photonics, Sensing And Imaging,” Lab Chip 12(19), 3543 (2012).
[Crossref]

K.-S. Chao, M.-S. Lin, and R.-J. Yang, “An In-Plane Optofluidic Microchip For Focal Point Control,” Lab Chip 13(19), 3886 (2013).
[Crossref]

P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab Chip 11(17), 2835–2841 (2011).
[Crossref]

M. I. Lapsley, I. K. Chiang, X. Ding, and T. J. Huang, “A Single-Layer, Planar, Optofluidic Mach-Zehnder Interferometer For Label-Free Detection,” Lab Chip 11(10), 1795 (2011).
[Crossref]

Microfluid. Nanofluid. (3)

J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, “Tunable Optofluidic Microlens Through Active Pressure Control Of An Air-Liquid Interface,” Microfluid. Nanofluid. 9(2-3), 313–318 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A Tuneable Micro-Optofluidic Biconvex Lens With Mathematically Predictable Focal Length,” Microfluid. Nanofluid. 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, Y. F. Yap, T.-D. Luong, and A. K. Asundi, “Multi-Functional, Optofluidic, In-Plane, Bi-Concave Lens: Tuning Light Beam From Focused To Divergent,” Microfluid. Nanofluid. 10(3), 671–678 (2011).
[Crossref]

Micromachines (4)

C. M. Collier, M. Wiltshire, J. Nichols, B. Born, E. L. Landry, and J. F. Holzman, “Nonlinear Dual-Phase Multiplexing In Digital Microfluidic Architectures,” Micromachines 2(4), 369–384 (2011).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9(3), 97 (2018).
[Crossref]

Y. Zuo, X. Zhu, Y. Shi, L. Liang, and Y. Yang, “Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing,” Micromachines 9(4), 163 (2018).
[Crossref]

Y. Zhang, B. R. Watts, T. Guo, Z. Zhang, C. Xu, and Q. Fang, “Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review,” Micromachines 7(4), 70 (2016).
[Crossref]

Nat. Photonics (2)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic Spectroscopy On A Chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics For Energy Applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Opt. Commun. (1)

H. Cheng, S. Xu, Y. Liu, S. Levi, and S. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun. 284(8), 2118–2121 (2011).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Photonics Res. (1)

S. Chen, R. Hao, Y. Zhang, and H. Yang, “Optofluidics in bio-imaging applications,” Photonics Res. 7(5), 532–542 (2019).
[Crossref]

Powder Technol. (1)

R. Nagarajaa, N. Kottam, C. R. Girijac, and B. M. Nagabhushana, “Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route,” Powder Technol. 215-216, 91–97 (2012).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. Min Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic Lens With Tunable Focal Length And Asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref]

Sens. Actuators, A (1)

I. Spotts, D. Ismail, N. Jaffar, and C. M. Collier, “Fibre-Optic Sensing In Digital Microfluidic Devices,” Sens. Actuators, A 280, 164–169 (2018).
[Crossref]

Other (3)

S. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” International Conference on MEMS, 252–255 (2010).

J. E. Greivenkamp, “Field guide to geometrical optics,” SPIE Publishing.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays,” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1211–1220 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The mechanically-tuned optofluidic lens with (a) long and (b) short back focal length for respective large and short diameter operation.
Fig. 2.
Fig. 2. The isometric view schematic of the experimental optical setup.
Fig. 3.
Fig. 3. Visualization of the ray tracing calculations showing the optofluidic lens, marginal ray, paraxial ray, optical axis, focal lengths, and Snell's Law angles. The dimensions are not-to-scale. The subscript acronyms are as follows: TPR is theoretical paraxial ray, TMR is theoretical marginal ray, and EFL is effective focal length.
Fig. 4.
Fig. 4. Experimental and theoretical back focal length of the marginal ray measurements are shown for plate separation, h, being (a) 750 µm, (b) 1080 µm, (c) 1540 µm, and (d) 2740 µm. The collimated beam of light enters the mechanically-tuned optofluidic lens from the left and is focused.
Fig. 5.
Fig. 5. Sensitivity of the mechanically-tuned optofluidic lens to a change in plate separation as characterised by back focal length vs. substrate plate separation for theoretical back focal length of the paraxial ray, fTPR (blue diamond symbols), theoretical back focal length of the marginal ray, fTMR (red triangle symbols), and experimental back focal length of the marginal ray, fEMR (green circle symbols). The subscript acronyms are as follows: TPR is theoretical paraxial ray, TMR is theoretical marginal ray, and EMR is experimental marginal ray.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 f E F L = ( n lens n dye ) ( 1 r 1 1 r 2 + ( n lens n dye ) t n lens r 1 r 2 ) .
f T P R = ( 2 n d y e n l e n s 1 1 ) n d y e f E F L .