Abstract

In this paper, we propose a tunable and polarization-independent absorber based on a bulk Dirac semimetal (BDS) metasurface at terahertz frequencies with a high absorption. The numerical results show that the full width at half maximum is ${\bigtriangleup} f = 9.1\times 10^{-2}$ THz. The absorption is maintained at above 95% when the Fermi level is in the range from 65 meV to 85 meV and the resonance frequency is in the range from 2.46 THz to 3.16 THz. For both polarizations, the absorption peak is maintained at above 80% for incident angles up to $60^{\circ }$. Based on our method, various BDS-based tunable absorbers can be designed for terahertz, infrared, and visible frequencies. This significantly enhances the usefulness of these absorbers in a wide range of applications such as sensing systems and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dirac semimetals based tunable narrowband absorber at terahertz frequencies

Gui-Dong Liu, Xiang Zhai, Hai-Yu Meng, Qi Lin, Yu Huang, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 26(9) 11471-11480 (2018)

Dynamically tunable coherent perfect absorption and transparency in Dirac semimetal metasurface

Kezheng Tang, Yi Su, Meng Qin, Xiang Zhai, and Lingling Wang
Opt. Mater. Express 9(9) 3649-3656 (2019)

Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal

Jun Luo, Qi Lin, Lingling Wang, Shengxuan Xia, Haiyu Meng, and Xiang Zhai
Opt. Express 27(15) 20165-20176 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref]
  2. E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
    [Crossref]
  3. X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  4. Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
    [Crossref]
  5. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref]
  6. G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
    [Crossref]
  7. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
    [Crossref]
  8. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref]
  9. J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
    [Crossref]
  10. G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
    [Crossref]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  12. J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
    [Crossref]
  13. E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
    [Crossref]
  14. J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
    [Crossref]
  15. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  16. L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
    [Crossref]
  17. X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
    [Crossref]
  18. Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
    [Crossref]
  19. X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
    [Crossref]
  20. X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
    [Crossref]
  21. Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  22. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  23. Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  24. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref]
  25. G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
    [Crossref]
  26. D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
    [Crossref]
  27. H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
    [Crossref]
  28. Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
    [Crossref]
  29. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
    [Crossref]
  30. O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  31. H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in h-shaped dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
    [Crossref]
  32. H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
    [Crossref]
  33. Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, and F. Wang, “Three-dimensional dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared,” Opt. Lett. 43(7), 1503–1506 (2018).
    [Crossref]
  34. L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
    [Crossref]
  35. T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
    [Crossref]
  36. G.-D. Liu, X. Zhai, H.-Y. Meng, Q. Lin, Y. Huang, C.-J. Zhao, and L.-L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref]
  37. L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
    [Crossref]
  38. H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  39. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]

2019 (2)

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

2018 (9)

G.-D. Liu, X. Zhai, H.-Y. Meng, Q. Lin, Y. Huang, C.-J. Zhao, and L.-L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in h-shaped dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, and F. Wang, “Three-dimensional dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared,” Opt. Lett. 43(7), 1503–1506 (2018).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

2017 (10)

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
[Crossref]

H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

2016 (5)

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

2015 (7)

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

2014 (1)

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

2012 (1)

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2007 (1)

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

2005 (1)

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Akwuruoha, C. N.

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Ali, M. N.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

An, N.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Bi, K.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Cai, G.

Cao, M.

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Cao, W.-P.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Cava, R.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Chang, K. H.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, H.

Chen, J.

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, J. C.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, K.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Chen, X.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Chen, Y.

Chu, C. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Cui, T. J.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Dai, L.

L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

De Maagt, P.

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

de Pineda, J. D.

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

Dong, G.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Dong, J.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Dudin, P.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Ederra, I.

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Feng, Y.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Fu, G.

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

Fu, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Gao, C.-N.

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Gao, X.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Geim, A. K.

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Gibson, Q.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Gong, Y.

Gonzalo, R.

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

Gu, Y.

Guo, L.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Guo, X.

Han, X.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hao, Y.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Hibbins, A. P.

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

Hong, M.

Hu, W.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Hu, Z.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Huang, J.

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Huang, L.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Huang, X.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Huang, Y.

Huang, Z.

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

Jiang, J.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Jiang, Y.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Jiang, Y.-N.

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Ju, Z.

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Koschny, T.

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Kotov, O. V.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lei, M.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Leng, T.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Li, G.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Li, H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Li, H. O.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Li, O.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Li, Y.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, and F. Wang, “Three-dimensional dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared,” Opt. Lett. 43(7), 1503–1506 (2018).
[Crossref]

Liang, T.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Lin, Q.

Liu, G.

Liu, G.-D.

G.-D. Liu, X. Zhai, H.-Y. Meng, Q. Lin, Y. Huang, C.-J. Zhao, and L.-L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

Liu, M.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, P.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Liu, Q. H.

Liu, S.

Liu, X.

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

Liu, Z.

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Lozovik, Y. E.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lu, W.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Lu, X.

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Ma, H. F.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Ma, X.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Meng, H.

Meng, H.-Y.

Meng, Y.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Mitchell-Thomas, R. C.

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

Mo, S.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Ni, B.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Novoselov, K. S.

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

O’Hara, J. F.

L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

Ominde, C. F.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Ong, N.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Owiti, E. O.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Peng, H.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Prabhakaran, D.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Qiu, C.-W.

Saenz, E.

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Sambles, J. R.

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

Shang, X.-J.

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

Shao, C.

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shi, Y.

Smith, D.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, Q.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Song, Z.

Soukoulis, C.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Sun, X.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Vier, D.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Wang, B.-X.

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

Wang, D.

Wang, F.

Wang, J.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Wang, L.

Wang, L.-L.

G.-D. Liu, X. Zhai, H.-Y. Meng, Q. Lin, Y. Huang, C.-J. Zhao, and L.-L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

Wang, Q.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Wang, T.

Wang, X.

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Wang, Z.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Wei, X.-C.

D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
[Crossref]

Wei, Z.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Weng, H.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xiao, S.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Xiu, F.

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xu, G.

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Xu, Y.

Xu, Y.-L.

D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
[Crossref]

Xue, X.

Yang, H.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Ye, L.

Yi, D.

D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
[Crossref]

Yi, N.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Yuan, X.

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Zhai, X.

Zhang, D.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Zhang, F.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, P.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, R.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Zhang, T.

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Zhang, X.

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Zhang, Y.

L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

T. Wang, M. Cao, Y. Zhang, and H. Zhang, “Tunable polarization-nonsensitive electromagnetically induced transparency in dirac semimetal metamaterial at terahertz frequencies,” Opt. Mater. Express 9(4), 1562–1576 (2019).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in h-shaped dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Zhao, C.-J.

Zhao, J.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Zhao, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhao, Y.

Zhong, J.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Zhou, B.

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Zhu, B.

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

Zhu, C.

Zhu, J.

Zhu, M.

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

Zou, Y.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

2D Mater. (1)

X. Huang, T. Leng, K. H. Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

ACS Photonics (2)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Adv. Opt. Mater. (1)

Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

L. Dai, Y. Zhang, H. Zhang, and J. F. O’Hara, “Broadband tunable terahertz cross-polarization converter based on dirac semimetals,” Appl. Phys. Express 12(7), 075003 (2019).
[Crossref]

Appl. Phys. Lett. (2)

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

J. D. de Pineda, R. C. Mitchell-Thomas, A. P. Hibbins, and J. R. Sambles, “A broadband metasurface luneburg lens for microwave surface waves,” Appl. Phys. Lett. 111(21), 211603 (2017).
[Crossref]

Chin. Phys. B (1)

J. Wang, C.-N. Gao, Y.-N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Electron. Lett. (1)

E. Saenz, I. Ederra, P. De Maagt, and R. Gonzalo, “Highly efficient dipole antenna with planar meta-surface,” Electron. Lett. 43(16), 850–851 (2007).
[Crossref]

IEEE Access (1)

Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, and Y. Li, “Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen,” IEEE Access 6, 26843–26853 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Fu, X. Liu, Z. Huang, J. Chen, and Z. Liu, “Metallic metasurfaces for light absorbers,” IEEE Photonics Technol. Lett. 29(1), 47–50 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. Yi, X.-C. Wei, and Y.-L. Xu, “Tunable microwave absorber based on patterned graphene,” IEEE Trans. Microwave Theory Tech. 65(8), 2819–2826 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45(20), 205102 (2012).
[Crossref]

Mod. Phys. Lett. B (1)

X. Wang, Q. Wang, G. Dong, Y. Hao, M. Lei, and K. Bi, “Multi-band terahertz metasurface absorber,” Mod. Phys. Lett. B 31(36), 1750354 (2017).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nanoscale (1)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref]

Nat. Commun. (1)

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, and C.-H. Kuan et al., “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Nat. Mater. (2)

Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, and P. Dudin et al., “A stable three-dimensional topological dirac semimetal cd 3 as 2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, “Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 as 2,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref]

Opt. Commun. (1)

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene,” Opt. Commun. 419, 114–119 (2018).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (2)

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

L. Guo, X. Ma, Y. Zou, R. Zhang, J. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

Z. Wei, J. Huang, J. Li, G. Xu, and Z. Ju, “Dual-broadband and near-perfect polarization converter based on anisotropic metasurface,” Opt. Quantum Electron. 49(9), 298 (2017).
[Crossref]

Phys. Rev. B (1)

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Phys. Rev. E (1)

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Plasmonics (2)

J. Zhong, N. An, N. Yi, M. Zhu, Q. Song, and S. Xiao, “Broadband and tunable-focus flat lens with dielectric metasurface,” Plasmonics 11(2), 537–541 (2016).
[Crossref]

G.-D. Liu, X. Zhai, L.-L. Wang, B.-X. Wang, Q. Lin, and X.-J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the 3$\times$3 unit structure of the proposed absorber which is composed of a patterned Dirac semimetal film, the dielectric layer and a metal reflector. The incident electric field is along the $x$-axis and the magnetic field is along the $y$-axis.
Fig. 2.
Fig. 2. (a) Real (left) and (b) imaginary (right) parts of the dynamic conductivity for the BDS (normalized to 1nm of the thickness) at zero temperature in units of $e^{2}/\hbar$ as a function of the normalized frequency $\Omega = \hbar \omega / E_{F}$ for different $E_F$ (60 meV, 75 meV, and 90 meV). The other parameters are $\mu = 3\times 10^{4}$ cm$^{2}$V$^{-1}$s$^{-1}$, $\tau = 4.5\times 10^{-13}$ s, and $\varepsilon _{c}=3$.
Fig. 3.
Fig. 3. (a) Simulated absorption at $E_F=75$ meV in TE mode(red curve) and TM mode(blue curve), and the resonance frequency of the proposed absorber is $f=2.860$ THz. (b) Simulated absorption at different Fermi levels $E_F$ from $E_F=60$ meV to $E_F=100$ meV of BDS, (c)and at different polarization angles.
Fig. 4.
Fig. 4. Simulated absorption of the proposed absorber at (a) different periods $P$ from 4$\mu m$ to 5$\mu m$,(b) different thicknesses $t_2$ of the dielectric layer, (c) different radii $r$ of the cut circle, (d) different radii $R$ of the thin disk.
Fig. 5.
Fig. 5. Simulated absorption of the proposed absorber at (a) different permittivities $\varepsilon$ and (b) different incident angles $\theta$.
Fig. 6.
Fig. 6. Electric field distribution at $f=2.86$ THz in (a) TE mode and (b) TM mode. (c) Electric field distribution and (d) magnetic field distribution in the cross section of $y$o$z$ plane in TE mode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Re σ ( ω ) = e 2 g k F 24 π Ω θ ( Ω 2 )
Im σ ( ω ) = e 2 g k F 24 π 2 [ 4 Ω Ω l n ( 4 ε c 2 | Ω 2 4 | ) ]
ε = ε b + i σ / ω ε 0
R = Z 1 Z 0 Z 1 + Z 0 ,
Z 1 = ± [ ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 ] 1 / 2 ,
φ p = 4 t ε r sin 2 θ λ ,