Abstract

Raman lasers based on mid-infrared (IR) fibers that operate at the 3–5 µm atmospheric transparency windows are attractive sources for many important applications. In this work, a Raman laser operating in the mid-IR range at 4.3 µm based on an As2Se3 fiber pumped by a 3.92 µm fiber laser has been designed and systematically optimized. The influences of pump power, fiber length, and output coupling efficiency on laser performance are investigated. Simulation results show that a fiber length of 0.75–1.3 m and an output coupler reflectivity of 89%–98% could obtain the optimized output power. The maximum output power of 0.269 W was obtained at a pump power of 1.5 W. The simulated result can be used for theoretical guidance and design optimization of practical chalcogenide fiber Raman lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of a mid-IR chalcogenide fiber Raman laser

P. A. Thielen, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal
Opt. Express 11(24) 3248-3253 (2003)

Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber

Gongwen Zhu, Lixiang Geng, Xiushan Zhu, Li Li, Qian Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian
Opt. Express 23(6) 7559-7573 (2015)

Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber

Chenquan Ni, Weiqing Gao, Xiangcai Chen, Li Chen, Yong Zhou, Wei Zhang, Jigang Hu, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 56(33) 9171-9178 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  2. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  4. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  5. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47(9), 1269–1277 (2008).
    [Crossref]
  6. J. Yao, B. Zhang, K. Yin, L. Yang, J. Hou, and Q. Lu, “Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source,” Opt. Express 24(13), 15093–15100 (2016).
    [Crossref]
  7. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
    [Crossref]
  8. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref]
  9. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  10. R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry–Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
    [Crossref]
  11. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
    [Crossref]
  12. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref]
  13. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 µm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref]
  14. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 microm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 microm,” Opt. Express 14(2), 678–685 (2006).
    [Crossref]
  15. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
    [Crossref]
  16. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  17. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref]
  18. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallee, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref]
  19. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  20. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
    [Crossref]
  21. M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3fibers using femtosecond pulses at 800 nm,” Opt. Lett. 37(18), 3900–3902 (2012).
    [Crossref]
  22. S. D. Jackson and G. Anzuetosánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
    [Crossref]
  23. V. Fortin, M. Bernier, M. El-Amraoui, and Y. Messaddeq, “Modeling of As2S3 Raman Fiber Lasers Operating in the Mid-Infrared,” IEEE Photonics J. 5(6), 1502309 (2013).
    [Crossref]
  24. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref]
  25. F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92  µm,” Optica 5(7), 761 (2018).
    [Crossref]
  26. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  27. https://irflex.com/products/irf-se-series/
  28. M. Krause and H. Renner, “Theory and design of double-cavity Raman fiber lasers,” J. Lightwave Technol. 23(8), 2474–2483 (2005).
    [Crossref]
  29. Y. Zhao and S. D. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun. 253(1-3), 172–176 (2005).
    [Crossref]
  30. S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
    [Crossref]
  31. P. H. Muir and S. D. Jackson, “Theory and numerical simulation of nth-order cascaded Ramen fiber lasers,” J. Opt. Soc. Am. B 18(9), 1297–1306 (2001).
    [Crossref]
  32. C. Ni, W. Gao, X. Chen, L. Chen, Y. Zhou, W. Zhang, J. Hu, M. Liao, T. Suzuki, and Y. Ohishi, “Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber,” Appl. Opt. 56(33), 9171–9178 (2017).
    [Crossref]
  33. H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
    [Crossref]
  34. J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
    [Crossref]
  35. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
    [Crossref]
  36. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]

2018 (2)

2017 (1)

2016 (2)

J. Yao, B. Zhang, K. Yin, L. Yang, J. Hou, and Q. Lu, “Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source,” Opt. Express 24(13), 15093–15100 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

2015 (2)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref]

2014 (2)

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (5)

2012 (4)

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (2)

2005 (2)

Y. Zhao and S. D. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun. 253(1-3), 172–176 (2005).
[Crossref]

M. Krause and H. Renner, “Theory and design of double-cavity Raman fiber lasers,” J. Lightwave Technol. 23(8), 2474–2483 (2005).
[Crossref]

2004 (1)

2003 (2)

S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

2001 (2)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

P. H. Muir and S. D. Jackson, “Theory and numerical simulation of nth-order cascaded Ramen fiber lasers,” J. Opt. Soc. Am. B 18(9), 1297–1306 (2001).
[Crossref]

1994 (1)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abouraddy, A. F.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Aggarwal, I. D.

Ahmad, R.

Androz, G.

Anzuetosánchez, G.

S. D. Jackson and G. Anzuetosánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Balakrishnan, K.

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bang, O.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bernier, M.

Brandon Shaw, L.

Brinkmeyer, E.

S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
[Crossref]

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Caron, N.

Carrée, J.-Y.

Chen, H.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Chen, L.

Chen, M.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Chen, Q.

Chen, X.

Chen, Y.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Cierullies, S.

S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
[Crossref]

Couillard, J. F.

Dai, Z.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

El-Amraoui, M.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

El-Taher, A. E.

Farries, M.

Faucher, D.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fortin, V.

Frerichs, C.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

Gao, W.

Gayraud, N.

Geng, L.

Hand, D. P.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hashida, M.

He, Y.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

Hodelin, J.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Hou, J.

Hu, J.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson and G. Anzuetosánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 microm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 microm,” Opt. Express 14(2), 678–685 (2006).
[Crossref]

Y. Zhao and S. D. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun. 253(1-3), 172–176 (2005).
[Crossref]

P. H. Muir and S. D. Jackson, “Theory and numerical simulation of nth-order cascaded Ramen fiber lasers,” J. Opt. Soc. Am. B 18(9), 1297–1306 (2001).
[Crossref]

Jain, R.

Jin, X.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

King, T. A.

Knight, J. C.

Kornaszewski, L. W.

Krause, M.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lenz, G.

Li, J.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Li, L.

Liao, M.

Liu, Y.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

Lloyd, G. R.

Lu, Q.

Luo, H.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

MacPherson, W. N.

Maes, F.

Manzur, T.

Messaddeq, Y.

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Monro, T. M.

Muir, P. H.

Murakami, M.

Nallala, J.

Napier, B.

Ni, C.

Norwood, R. A.

Ohishi, Y.

Petersen, C. R.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poulain, M.

Poulain, S.

Prtljaga, N.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Reid, D. T.

Renner, H.

M. Krause and H. Renner, “Theory and design of double-cavity Raman fiber lasers,” J. Lightwave Technol. 23(8), 2474–2483 (2005).
[Crossref]

S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
[Crossref]

Rochette, M.

Sakabe, S.

Sanghera, J.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shimizu, S.

Slusher, R. E.

Song, F.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Stone, J. M.

Stone, N.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

Suzuki, T.

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

Tao, G.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Tauermann, T.

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

Tokita, S.

Tsang, Y. H.

Vallee, R.

Vallée, R.

Wang, F.

Ward, J.

Wei, C.

White, R. T.

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Xu, Y.

Yang, L.

Yang, Y.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Yao, J.

Yin, K.

Yong, L.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, B.

Zhang, W.

Zhao, Y.

Y. Zhao and S. D. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun. 253(1-3), 172–176 (2005).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, Y.

Zhu, G.

Zhu, X.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. D. Jackson and G. Anzuetosánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

Electron. Lett. (1)

C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm,” Electron. Lett. 30(9), 706–707 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

IEEE Photonics J. (2)

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by Tm3+-Doped Fiber Laser,” IEEE Photonics J. 5(2), 2700211 (2013).
[Crossref]

V. Fortin, M. Bernier, M. El-Amraoui, and Y. Messaddeq, “Modeling of As2S3 Raman Fiber Lasers Operating in the Mid-Infrared,” IEEE Photonics J. 5(6), 1502309 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (3)

Y. Zhao and S. D. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun. 253(1-3), 172–176 (2005).
[Crossref]

S. Cierullies, H. Renner, and E. Brinkmeyer, “Numerical optimization of multi-wavelength and cascaded Raman fiber lasers,” Opt. Commun. 217(1-6), 233–238 (2003).
[Crossref]

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and L. Yong, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284(5), 1278–1283 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallee, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry–Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref]

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 µm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref]

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[Crossref]

M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3fibers using femtosecond pulses at 800 nm,” Opt. Lett. 37(18), 3900–3902 (2012).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a f luoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Other (1)

https://irflex.com/products/irf-se-series/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of an all-fiber As2Se3 fiber Raman laser.
Fig. 2.
Fig. 2. Attenuation spectrum of the used As2Se3 fiber.
Fig. 3.
Fig. 3. Evolutions of pump and Stokes powers along the As2Se3 fiber with different value of R3 and pump power when the fiber length is 3 m.
Fig. 4.
Fig. 4. Calculated output power as a function of pump power with different fiber lengths when R3=40%.
Fig. 5.
Fig. 5. Threshold as a function of fiber length with different values of R3.
Fig. 6.
Fig. 6. Output laser power as a function of fiber length with different values of R3 when the pump powers are (a) 2 W and (b) 1 W.
Fig. 7.
Fig. 7. (a) Output power as a function of pump power with FBG3 reflectivity of 70%–95% when fiber length is 2 m. Threshold as a function of FBG3 reflectivity R3 when the fiber length is 0.2–2.0 m and the pump powers are (b) 5 W and (c) 2W. (d) Output power as a function of R3 when the fiber length is 0.2–2 m and the pump power is 2 W.
Fig. 8.
Fig. 8. Three-dimensional plot of output power as a function of R3 and fiber length at pump powers of (a) 0.8 W, (b) 1 W, and (c) 1.5 W. (d), (e), and (f) are the corresponding contour maps of (a), (c), and (e), respectively.
Fig. 9.
Fig. 9. Evolution of heat power density Q along the fiber for 1.5W pump power.
Fig. 10.
Fig. 10. Evolutions of temperature along (a) both radial and axial directions and (b) radial direction of fiber at fiber front end for launched pump power of 1.5 W.

Tables (1)

Tables Icon

Table 1. Modeling parameters of the 4.3 µm Raman laser in chalcogenide glass fibers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ d P P + d z = α p P P + g RP A P P + ( P S + + P S ) d P P d z = α P P P + g RP A P P ( P S + + P S ) d P S + d z = α S P S + + g RS A ( P P + + P P ) P S + d P S + d z = α S P S g RS A ( P P + + P P ) P S ,
{ P s + ( 0 ) = R 1 P s ( 0 ) P s ( L ) = R 3 P s + ( L ) P p + ( 0 ) = P 0 P p ( L ) = R 2 P p + ( L ) ,
A = π ω 0 2 = π [ a ( 0.65 + 1.619 V 3 2 + 2.879 V 6 ) ] 2
Q ( z ) = ( g R s A ( P S + + P S ) + α p ) P p ( z ) ( 1 S ) π a 2
{ T 1 ( r ) = T 0 Q ( z ) r 2 4 κ , ( 0 r a ) T 2 ( r ) = T 0 Q ( z ) a 2 4 κ Q ( z ) a 2 2 κ ln ( r a ) , ( a r b ) σ ε T 2 4 | r = b + h κ T 2 | r = b ( h κ T C + σ ε T C 4 + Q ( z ) a 2 2 κ b ) = 0

Metrics