Abstract

The designs of single ellipse-shape metamaterials (SESM) and cross ellipse-shape metamaterials (CESM) in the infrared (IR) wavelength range are presented. They are composed of a tailored gold (Au) layer on a silicon (Si) substrate. The characterizations of the proposed devices can have their electromagnetic responses manipulated between single-band and dual-band resonances by changing different ratios of the macro-axis and minor-axis of the ESM. The electromagnetic behavior of the dual-band resonance exhibits the resonance with a broad bandwidth or narrow bandwidth. The corresponding free spectral range (FSR) could be tuned 90 nm in transverse electric (TE) mode and 224 nm in transverse magnetic (TM) mode for SESMs. For CESMs, the FSR could be tuned 153 nm in TE mode and 230 nm in TM mode. Depending on the design of symmetrical or asymmetrical ESM, we can design ESM-like nanostructures to realize the IR filter, polarization switch, band switch, and high-efficiency sensor applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency in terahertz complementary spiral-shape metamaterials

Shaojun Cheng, Zefeng Xu, Dongyuan Yao, Xiao Zhang, Zhi Zhang, and Yu-Sheng Lin
OSA Continuum 2(7) 2137-2144 (2019)

Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs)

Dongyuan Yao, Kanghong Yan, Xiaoyan Liu, Shaoquan Liao, Yangbin Yu, and Yu-Sheng Lin
OSA Continuum 1(2) 349-357 (2018)

Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic

Zefeng Xu, Zhicheng Lin, Shaojun Cheng, and Yu-Sheng Lin
Opt. Lett. 44(16) 3944-3947 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterial using electric split-ring resonators,” Opt. Lett. 38(16), 3126–3128 (2013).
    [Crossref]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  3. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [Crossref]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref]
  5. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
    [Crossref]
  6. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
    [Crossref]
  7. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
    [Crossref]
  8. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref]
  9. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref]
  10. D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
    [Crossref]
  11. H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
    [Crossref]
  12. J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
    [Crossref]
  13. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref]
  14. Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
    [Crossref]
  15. S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
    [Crossref]
  16. S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
    [Crossref]
  17. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  18. K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref]
  19. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  20. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  21. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
    [Crossref]
  22. W. Li and J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref]
  23. T. Maier and H. Brueckl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref]
  24. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref]
  25. P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  26. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  27. N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
    [Crossref]
  28. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref]
  29. J. S. Penades, A. Ortega-Monux, M. Nedeljkovic, J. G. Wanguemert-Perez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernandez, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
    [Crossref]
  30. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
    [Crossref]
  31. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
    [Crossref]
  32. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
    [Crossref]
  33. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14(15), 6778–6787 (2006).
    [Crossref]
  34. M. Beruete, M. Sorolla, and I. Campillo, “Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14(12), 5445–5455 (2006).
    [Crossref]
  35. M. Navarro-Cia, M. Beruete, M. Sorolla, and I. Campillo, “Negative refraction in a prism made of stacked subwavelength hole arrays,” Opt. Express 16(2), 560–566 (2008).
    [Crossref]
  36. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref]
  37. K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
    [Crossref]
  38. Z. Xu, R. Xu, J. Sha, B. Zhang, Y. Tong, and Y. S. Lin, “Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure,” OSA Continuum 1(2), 573–580 (2018).
    [Crossref]
  39. Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
    [Crossref]
  40. Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
    [Crossref]
  41. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
    [Crossref]

2018 (2)

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Z. Xu, R. Xu, J. Sha, B. Zhang, Y. Tong, and Y. S. Lin, “Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure,” OSA Continuum 1(2), 573–580 (2018).
[Crossref]

2017 (1)

2016 (3)

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

J. S. Penades, A. Ortega-Monux, M. Nedeljkovic, J. G. Wanguemert-Perez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernandez, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

2015 (6)

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
[Crossref]

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

2014 (4)

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

2013 (6)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterial using electric split-ring resonators,” Opt. Lett. 38(16), 3126–3128 (2013).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

2012 (3)

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

2011 (4)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref]

2010 (2)

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

2009 (1)

2008 (4)

M. Navarro-Cia, M. Beruete, M. Sorolla, and I. Campillo, “Negative refraction in a prism made of stacked subwavelength hole arrays,” Opt. Express 16(2), 560–566 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref]

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

2007 (1)

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

2006 (2)

2005 (1)

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

2002 (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Alonso-Ramos, C.

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Alu, A.

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref]

Amaratunga, G. A. J.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Aono, M.

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Bai, Y.

Baida, F. I.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Baryshnikova, K.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Baumberg, J. J.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Belov, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Beruete, M.

Bingham, C.

Brueck, S. R. J.

Brueckl, H.

Butler, T.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Butt, H.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Campillo, I.

Cheben, P.

Chen, H.-T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, K.

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, S.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, W.

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dai, Q.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dong, X.-Z.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Duan, X. M.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Economou, E. N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Engheta, N.

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref]

Fan, K.

Fan, W.

Farah, P.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Feng, Q.

Fink, M.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

Foteinopoulou, S.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Fu, T.

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Ginzburg, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Greenwald, A.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Guo, L. J.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Guven, K.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Halir, R.

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Hu, C.

Huang, C.

Ishii, S.

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Jia, Y. P.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Jiang, Y.

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ju, D.

Kafesaki, M.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Kaina, N.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

Katsarakis, N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Khokhar, A. Z.

Kimata, M.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Komoda, J.

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Koschny, T.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Krasnok, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Kwak, M. K.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Lan, F.

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

Lee, C.

Lee, K.-T.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Lemoult, F.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

Lerosey, G.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Li, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]

Li, Z.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Lin, Y. S.

Liu, L.

Liu, Y.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Lu, W. T.

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

Luo, X.

Ma, F.

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Maier, T.

Malloy, K. J.

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

Markovich, D.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Mashanovich, G. Z.

Masuda, K.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Minovich, A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Molina-Fernandez, I.

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

Montoya, J.

Moussa, R.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Nagao, T.

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Navarro-Cia, M.

Nedeljkovic, M.

Neshev, D. N.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Ogawa, S.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Ok, J. G.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Ortega-Monux, A.

Osgood, R. M.

Ouyang, Z.

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

Ozbay, E.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Padilla, W. J.

Panoiu, N. C.

Penades, J. S.

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Pu, M.

Qu, Z.

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Samusev, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Sha, J.

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Shalin, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Shin, Y. J.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Sorolla, M.

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Sridhar, S.

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

Sriram, S.

Stenger, V.

Suen, J. Y.

Takagawa, Y.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Thang Duy, D.

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tong, Y.

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Tsiapa, I.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Tuttle, G.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Wang, C.

Wang, M.

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Wanguemert-Perez, J. G.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Wilkinson, T. D.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Xu, R.

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Xu, Z.

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yogesh, N.

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

Youn, H. S.

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, Z. G.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Zhang, B.

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, L.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14(15), 6778–6787 (2006).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Zhang, Y. L.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Zhao, L.

Zhao, Z.

Zhao, Z. S.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Zheng, M. L.

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

ACS Nano (2)

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref]

Adv. Funct. Mater. (1)

K. Chen, D. Thang Duy, S. Ishii, M. Aono, and T. Nagao, “Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Adv. Mater. (2)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Appl. Phys. Lett. (5)

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

J. G. Ok, H. S. Youn, M. K. Kwak, K.-T. Lee, Y. J. Shin, L. J. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012).
[Crossref]

IEEE Photonics J. (1)

N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, “Far-Infrared Circular Polarization and Polarization Filtering Based on Fermat's Spiral Chiral Metamaterial,” IEEE Photonics J. 7(3), 1–12 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers,” IEEE Trans. Antennas Propag. 61(3), 1201–1209 (2013).
[Crossref]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Nano Lett. (2)

W. Li and J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

Opt. Commun. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Opt. Eng. (2)

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (1)

Y. S. Lin and W. Chen, “A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Optica (1)

OSA Continuum (1)

Phys. E (1)

Y. P. Jia, Y. L. Zhang, X.-Z. Dong, M. L. Zheng, Z. S. Zhao, and X. M. Duan, “Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators,” Phys. E 74, 659–664 (2015).
[Crossref]

Phys. Rev. B (3)

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005).
[Crossref]

Phys. Rev. Lett. (1)

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref]

Sci. Rep. (2)

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 24003 (2016).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Science (1)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic drawings of (a) single ellipse-shape metamaterial (SESM) and (b) cross ellipse-shape metamaterial (CESM), where Px, Py, and thickness of Au layer are kept as constant as 3 µm, 3 µm, 200 nm, respectively.
Fig. 2.
Fig. 2. Transmission spectra of SESM with different r0 value at (a) TE mode and (b) TM mode.
Fig. 3.
Fig. 3. (a) The relationship of resonance (ω2) and r0 of SESM at TE and TM modes. (b) The E-field and H-field distributions of SESM with r0 = 0.2, 0.5, 0.8, and 1.0 are monitored at normal incident electromagnetic wave, respectively.
Fig. 4.
Fig. 4. Transmission spectra of CESM with different r at (a) TE mode and (b) TM mode.
Fig. 5.
Fig. 5. (a) The relationship of resonance and r for CESM. (b) The E-field and H-field distributions of CESM with r = 0.2, 0.5, 0.8, and 1.0 are monitored at normal incident electromagnetic wave, respectively.
Fig. 6.
Fig. 6. Transmission spectra of CESM with different r2 at (a) TE mode and (b) TM mode. The r1 is kept as constant as 0.1.
Fig. 7.
Fig. 7. (a) The relationship of resonance and r2 for CESM. (b) The E-field and H-field distributions of CESM with r2 = 0.2, 0.5, 0.8, and 1.0 are monitored at normal incident electromagnetic wave, respectively. The r1 is kept as constant as 0.1.
Fig. 8.
Fig. 8. The relationships of resonance and r2 for CESM under the conditions of (a) r1 = 0.2, (b) r1 = 0.3, (c) r1 = 0.5, and (d) r1 = 0.7, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = P x P y i 2 P y 2 + j 2 P x 2 ε m + ε d ε m ε d

Metrics