Abstract

We computationally investigate a novel temperature sensor that uses liquid-filled negative curvature optical fibers. Both the core and cladding tubes are infiltrated with a liquid that has a temperature-sensitive refractive index. The high-loss resonant wavelengths are sensitive to the liquid’s change of the refractive index. The refractive index of the liquid decreases and the resonant wavelengths increase when the temperature increases. The temperature sensitivity is 1.1 nm/$\,^{\circ }\mathrm {C}$ as the temperature changes from 15$\,^{\circ }\mathrm {C}$ to 35$\,^{\circ }\mathrm {C}$ using negative curvature optical fibers that are filled with liquid that has a refractive index of 1.36. The temperature sensitivity rises from 0.82 nm/$\,^{\circ }\mathrm {C}$ to 2.48 nm/$\,^{\circ }\mathrm {C}$ when different liquids are used with a refractive index from 1.30 to 1.42, and we use the third resonant peak in the fiber. The temperature sensitivity can be increased by 38$\%$ by using the second resonant peak. An analytical formula for the temperature sensitivity is derived, which can give an accurate prediction for the temperature sensitivity of this sensor. The relatively large size of the air core and cladding tubes, on the order of 10 $\mu$m, should make the infiltration procedure easier compared to other photonic crystal fibers with smaller holes. With temperature sensors based on liquid-filled negative curvature optical fibers, there is no need for any special post-processing, such as the liquid filling of selected air holes or inscription of fiber gratings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling

Sijun Weng, Li Pei, Jianshuai Wang, Tigang Ning, and Jing Li
Photon. Res. 5(2) 103-107 (2017)

Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling

Yongqin Yu, Xuejin Li, Xueming Hong, Yuanlong Deng, Kuiyan Song, Youfu Geng, Huifeng Wei, and Weijun Tong
Opt. Express 18(15) 15383-15388 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]
  2. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref]
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  4. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.
  5. W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref]
  6. X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
    [Crossref]
  7. W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
    [Crossref]
  8. V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng. 55(12), 126107 (2016).
    [Crossref]
  9. V. Bhardwaj and V. K. Singh, “Study of liquid sealed no-core fiber interferometer for sensing applications,” Sens. Actuators, A 254, 95–100 (2017).
    [Crossref]
  10. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
    [Crossref]
  11. P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
    [Crossref]
  12. L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
    [Crossref]
  13. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref]
  14. X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24(13), 14642–14647 (2016).
    [Crossref]
  15. Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
    [Crossref]
  16. D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
    [Crossref]
  17. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
    [Crossref]
  18. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [Crossref]
  19. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.
  20. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref]
  21. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  22. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  23. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref]
  24. F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
    [Crossref]
  25. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
    [Crossref]
  26. C. Wei, C. R. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24(11), 12228–12239 (2016).
    [Crossref]
  27. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  28. X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
    [Crossref]
  29. F. Giovanardi, A. Cucinotta, and L. Vincetti, “Inhibited coupling guiding hollow fibers for label-free DNA detection,” Opt. Express 25(21), 26215–26220 (2017).
    [Crossref]
  30. C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.
  31. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref]
  32. C. Wei, C. R Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
    [Crossref]
  33. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref]
  34. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [Crossref]
  35. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  36. Cargille Labs, “Refractive Index (Matching) Liquids,” http://www.cargille.com/refractivestandards.shtml .
  37. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow core photonic crystal fiber Part I: Arcs curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref]
  38. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
    [Crossref]
  39. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [Crossref]

2018 (1)

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

2017 (7)

V. Bhardwaj and V. K. Singh, “Study of liquid sealed no-core fiber interferometer for sensing applications,” Sens. Actuators, A 254, 95–100 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
[Crossref]

F. Giovanardi, A. Cucinotta, and L. Vincetti, “Inhibited coupling guiding hollow fibers for label-free DNA detection,” Opt. Express 25(21), 26215–26220 (2017).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

2016 (7)

2015 (1)

2014 (1)

2013 (1)

2012 (3)

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (2)

2006 (2)

2005 (1)

2003 (2)

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

1965 (1)

Ahmed, G.

Alharbi, M.

Alkeskjold, T. T.

Amsanpally, A.

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Argyros, A.

Bang, O.

Baz, A.

Beaudou, B.

Benabid, F.

Bhardwaj, V.

V. Bhardwaj and V. K. Singh, “Study of liquid sealed no-core fiber interferometer for sensing applications,” Sens. Actuators, A 254, 95–100 (2017).
[Crossref]

V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng. 55(12), 126107 (2016).
[Crossref]

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Blondy, J. M.

Bradley, T.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Cao, L.

Chafer, M.

Chan, C. C.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Chen, J.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Chenard, F.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

Cox, F. M.

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Cucinotta, A.

Cui, Y.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Debord, B.

Demokan, M. S.

Ding, W.

Dong, X.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Dong, X. Y.

Edavalath, N. N.

Eggleton, B. J.

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[Crossref]

P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
[Crossref]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Feng, X.

Fourcade-Dutin, C.

Frosz, M. H.

Gangwar, R. K.

V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng. 55(12), 126107 (2016).
[Crossref]

Gao, S.

Gérôme, F.

Giovanardi, F.

Gunawardena, D.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

Günendi, M. C.

Guo, J. T.

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

Han, T.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

He, S. L.

Ho, H. L.

Hoo, Y. L.

Hu, D.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Hu, J.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. Wei, C. R Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24(11), 12228–12239 (2016).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref]

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.

Hu, L.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Hu, M.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Hugonnot, E.

Jakobsen, C.

Jiang, X.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Jin, S. Z.

Jin, W.

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Koshiba, M.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Kuhlmey, B. T.

Kuis, R. A.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Lægsgaard, J.

Large, M. C. J.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Li, T.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Li, Y.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Liao, C. R.

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref]

Lim, J.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Liu, B.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Liu, X.

Liu, Y.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Liu, Z.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

Lyngsø, J. K.

Magi, E. C.

Malitson, I. H.

Maurel, M.

Ménard, J.-M.

Meng, F.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Menyuk, C. R

C. Wei, C. R Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Menyuk, C. R.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24(11), 12228–12239 (2016).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref]

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.

Michieletto, M.

Milenko, K.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Moore, E. D.

Poletti, F.

Qian, W.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Qian, W. W.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

Saitoh, K.

Scol, F.

Shao, L.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

Shum, P.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Singh, V. K.

V. Bhardwaj and V. K. Singh, “Study of liquid sealed no-core fiber interferometer for sensing applications,” Sens. Actuators, A 254, 95–100 (2017).
[Crossref]

V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng. 55(12), 126107 (2016).
[Crossref]

St. J. Russell, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref]

Steinvurzel, P.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Tam, H. Y.

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Uebel, P.

Vincetti, L.

Wang, C.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Wang, D. N.

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref]

Wang, P.

Wang, Y.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

Wang, Y. Y.

Wang, Z.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Wasserscheid, P.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Wei, C.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

C. Wei, C. R Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24(11), 12228–12239 (2016).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.

Wei, H. F.

Weiblen, R. J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

Wheeler, N. V.

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Wolinski, T.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Wong, W. C.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Wu, D. K. C.

Xiao, L.

Yang, M.

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Young, J. T.

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Zhang, S. Q.

Zhang, Z. X.

Zhao, C.

Zhao, C. L.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref]

Zheng, X.

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24(13), 14642–14647 (2016).
[Crossref]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

Zu, P.

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

Adv. Opt. Photonics (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Analyst (1)

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St. J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142(6), 925–929 (2017).
[Crossref]

Appl. Phys. Lett. (1)

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100(14), 141104 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

IEEE Photonics J. (3)

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

C. Wei, C. R Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photonics Technol. Lett. 12(5), 495–497 (2000).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

IEEE Sens. J. (1)

W. Qian, C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” IEEE Sens. J. 12(8), 2593–2597 (2012).
[Crossref]

J. Lightwave Technol. (2)

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[Crossref]

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

J. Opt. Soc. Am. (1)

Micromachines (1)

L. Shao, Z. Liu, J. Hu, D. Gunawardena, and H. Y. Tam, “Optofluidics in microstructured optical fibers,” Micromachines 9(4), 145 (2018).
[Crossref]

Opt. Eng. (1)

V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement,” Opt. Eng. 55(12), 126107 (2016).
[Crossref]

Opt. Express (11)

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24(13), 14642–14647 (2016).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010).
[Crossref]

L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[Crossref]

F. Giovanardi, A. Cucinotta, and L. Vincetti, “Inhibited coupling guiding hollow fibers for label-free DNA detection,” Opt. Express 25(21), 26215–26220 (2017).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24(11), 12228–12239 (2016).
[Crossref]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow core photonic crystal fiber Part I: Arcs curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref]

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (6)

Optica (1)

Sens. Actuators, A (1)

V. Bhardwaj and V. K. Singh, “Study of liquid sealed no-core fiber interferometer for sensing applications,” Sens. Actuators, A 254, 95–100 (2017).
[Crossref]

Other (4)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC), Vol. 70 (2002), p. 466.

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

Cargille Labs, “Refractive Index (Matching) Liquids,” http://www.cargille.com/refractivestandards.shtml .

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JW2A.179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Cross section of a negative curvature optical fiber filled with a liquid that is sensitive to temperature changes.
Fig. 2.
Fig. 2. (a) Effective index and (b) leakage loss of negative curvature optical fibers that are filled with liquid. The refractive index of the liquid is 1.36 when the wavelength is 0.589 $\mu$m and the temperature is 25$\,^{\circ }\mathrm {C}$. (c) Shift of the reference wavelength of the third resonant peak, $\lambda _\textrm {ref} = (\lambda _{1} + \lambda _{2})/2$, when the temperature increases from 15$\,^{\circ }\mathrm {C}$ to 35$\,^{\circ }\mathrm {C}$.
Fig. 3.
Fig. 3. (a) Thermal coefficient of liquids with different refractive indices and resonant wavelengths for negative curvature optical fibers filled with liquids that have different refractive indices. (b) Temperature sensitivity of negative curvature optical fibers filled with liquids that have different refractive indices. The order of the resonance, $m$, equals 3.
Fig. 4.
Fig. 4. Temperature sensitivity of negative curvature optical fibers filled with liquids that have different refractive indices. We show the sensitivity of the $m$ = 2 and $m$ = 3 resonance orders.

Tables (1)

Tables Icon

Table 1. Performance comparison between different fiber temperature sensors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=2tnG2nL2m.
dλ=2tnLmnG2nL2dnL.
dλdT=2tnLCLmnG2nL2.

Metrics