Abstract

A simple and effective polarization-insensitive triple narrow-band plasmonic perfect absorber is proposed and investigated numerically. This device can serve as an ultra-sensitive refractive index sensor from the near-infrared to the visible region. The triple narrow-band perfect absorber consists of a structured metal film constructed with an assembly of vertical-square-split-ring (VSSR) resonators. The triple narrow-band perfect absorption is due to the hybrid modes between the surface plasmon polaritons and guided modes with different order. Furthermore, the absorption peak shows a highly sensitive response to the change of refractive index in the surrounding medium. A careful design for the perfect absorption based refractive index sensor can yield a sensitivity of 1194, 816, and 473 nm/refractive index unit (RIU), respectively. Due to the high sensing performance, the triple narrow-band perfect absorber provides great potential for applications in enhanced sensing and spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect narrow band absorber for sensing applications

Shiwen Luo, Jun Zhao, Duluo Zuo, and Xinbing Wang
Opt. Express 24(9) 9288-9294 (2016)

Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies

Jie Xu, Ziyi Zhao, Haochi Yu, Le Yang, Peng Gou, Jun Cao, Yuexin Zou, Jie Qian, Tianjun Shi, Qijun Ren, and Zhenghua An
Opt. Express 24(22) 25742-25751 (2016)

Metal-dielectric-metal based narrow band absorber for sensing applications

Xiaoyuan Lu, Rengang Wan, and Tongyi Zhang
Opt. Express 23(23) 29842-29847 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  2. K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref]
  3. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  5. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  6. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
    [Crossref]
  7. Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
    [Crossref]
  8. X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
    [Crossref]
  9. R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref]
  10. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref]
  11. G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
    [Crossref]
  12. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  13. A. Jamali and B. Witzigmann, “Plasmonic perfect absorbers for biosensing applications,” Plasmonics 9(6), 1265–1270 (2014).
    [Crossref]
  14. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  15. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  16. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref]
  17. Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
    [Crossref]
  18. Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
    [Crossref]
  19. Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
    [Crossref]
  20. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
    [Crossref]
  21. Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
    [Crossref]
  22. Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
    [Crossref]
  23. R. Chern and W. Hong, “Nearly perfect absorption in intrinsically low-loss grating structures,” Opt. Express 19(9), 8962 (2011).
    [Crossref]
  24. X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
    [Crossref]
  25. Y. L. Liao and Y. Zhao, “Ultrabroad band absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
    [Crossref]
  26. Y. L. Liao and Y. Zhao, “Near-perfect absorption with a metallic grating and dielectric substrate,” J. Nanophotonics 9(1), 093087 (2015).
    [Crossref]
  27. H. Luo. and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
    [Crossref]
  28. Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
    [Crossref]
  29. Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
    [Crossref]
  30. W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
    [Crossref]
  31. S. Luo, J. Zhao, D. L. Zuo, and X. B. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref]
  32. R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  33. P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref]
  34. F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
    [Crossref]
  35. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
    [Crossref]
  36. Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
    [Crossref]
  37. W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
    [Crossref]
  38. D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
    [Crossref]
  39. B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
    [Crossref]
  40. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Ward “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,”,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref]
  41. Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
    [Crossref]
  42. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
    [Crossref]
  43. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
    [Crossref]
  44. L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near infrared wavelengths,” Opt. Express 21(S1), A111 (2013).
    [Crossref]
  45. Y. Han, J. A. Huang, X. Y. Liu, X. J. Zhang, J. X. Shi, and C. C. Yan, “Polarization-independent broadband plasmonic absorber based on a silicon-nanowire array decorated by gold nanoparticles at the optical regime,” Opt. Express 24(9), 9178–9186 (2016).
    [Crossref]
  46. J. Wu, “Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure,” Opt. Mater. 62, 47–51 (2016).
    [Crossref]
  47. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
    [Crossref]
  48. Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
    [Crossref]
  49. A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
    [Crossref]
  50. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
    [Crossref]
  51. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614 (2011).
    [Crossref]

2018 (2)

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

2017 (8)

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

H. Luo. and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

2016 (9)

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

S. Luo, J. Zhao, D. L. Zuo, and X. B. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Y. Han, J. A. Huang, X. Y. Liu, X. J. Zhang, J. X. Shi, and C. C. Yan, “Polarization-independent broadband plasmonic absorber based on a silicon-nanowire array decorated by gold nanoparticles at the optical regime,” Opt. Express 24(9), 9178–9186 (2016).
[Crossref]

J. Wu, “Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure,” Opt. Mater. 62, 47–51 (2016).
[Crossref]

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

2015 (5)

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Y. L. Liao and Y. Zhao, “Ultrabroad band absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Y. L. Liao and Y. Zhao, “Near-perfect absorption with a metallic grating and dielectric substrate,” J. Nanophotonics 9(1), 093087 (2015).
[Crossref]

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref]

2014 (6)

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
[Crossref]

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

A. Jamali and B. Witzigmann, “Plasmonic perfect absorbers for biosensing applications,” Plasmonics 9(6), 1265–1270 (2014).
[Crossref]

F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
[Crossref]

2013 (3)

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near infrared wavelengths,” Opt. Express 21(S1), A111 (2013).
[Crossref]

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

2012 (2)

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

2011 (8)

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

R. Chern and W. Hong, “Nearly perfect absorption in intrinsically low-loss grating structures,” Opt. Express 19(9), 8962 (2011).
[Crossref]

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

2010 (4)

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

2009 (2)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2007 (1)

K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

1983 (1)

Alexander, R. W.

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

An, Z.

Annu, R. P.

K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Bade, K.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Bartoli, F. J.

Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Blume, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Born, N.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Braun, P. V.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Cai, Z. J.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Cao, J.

Chao, C. T. C.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Chau, Y. F. C.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Chen, H. R.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Chen, H. T.

Chen, L.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

Cheng, F.

Cheng, Y. Z.

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

H. Luo. and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Chern, R.

Chiang, H. P.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Chowdhury, D. R.

Cui, Y.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Dregely, N.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

Duyne, V.

K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Fang, C.

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Fang, N. X.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fischer, J.

Fu, Y. Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Fung, K. H.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Gan, Q.

Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
[Crossref]

Gao, J.

Gao, Y.

Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
[Crossref]

Giessen, H.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Gong, R. R.

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Gou, P.

Gu, G.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Guo, Z. B.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Guo, Z. Z.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Han, D.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Han, J. G.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Han, Y.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, S.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Hong, W.

Hu, Y.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Hu, Y. H.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Huang, H. J.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Huang, J. A.

Huang, L.

Huang, M. L.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Huang, S.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Huang, W. Q.

B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Jacob, Y. L. H.

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

Jamali, A.

A. Jamali and B. Witzigmann, “Plasmonic perfect absorbers for biosensing applications,” Plasmonics 9(6), 1265–1270 (2014).
[Crossref]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Jiang, S. C.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Jin, Y.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Jing, J.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Kaschke, J.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[Crossref]

Koch, M.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Kumara, N. T. R. N.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Kwok, H. S.

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Li, G. J.

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

Li, H.

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

Li, J. Q.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Li, Q.

Li, R. F.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Liang, Q. Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Liao, Y. L.

Y. L. Liao and Y. Zhao, “Ultrabroad band absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Y. L. Liao and Y. Zhao, “Near-perfect absorption with a metallic grating and dielectric substrate,” J. Nanophotonics 9(1), 093087 (2015).
[Crossref]

Lim, C. M.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Lin, C. T.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Liu, C.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

Liu, F.

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

Liu, G. Q.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, H.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, X. S.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Liu, X. Y.

Liu, Y. M.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Liu, Z. Q.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Long, L. L.

Lu, X.

Lu, X. Y.

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

Lu, Z. W.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Luo, S.

Luo, S. N.

Luo., H.

H. Luo. and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Ma, R.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

Mai, R.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

Mao, X. S.

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Meshch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Miroshnichenko, A. E.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Ordal, M. A.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Pan, P. P.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Peng, R. W.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Qian, J.

Qian, Q. Y.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Qiu, M.

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near infrared wavelengths,” Opt. Express 21(S1), A111 (2013).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rahmani, M.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Ramani, S.

Reiten, M. T.

Ren, Q.

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Rifat, A. A.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shao, H. B.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Shen, L. F.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shi, J. X.

Shi, L.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Shi, T.

Song, Q.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Sun, G.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[Crossref]

Sun, Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Sun, S.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Sun, T.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Tan, H.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Taubert, D.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

Taylor, A. J.

Thiel, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Tittl, P.

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Voo, N. Y.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Wan, R. G.

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

Wang, B. X.

B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Wang, C. H.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Wang, C. K.

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Wang, J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L. L.

B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Wang, M.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Wang, T. S.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Wang, X. B.

Wang, Y.

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wang, Z. H.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Ward, C. A.

Wegener, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Willets, K. A.

K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Witzigmann, B.

A. Jamali and B. Witzigmann, “Plasmonic perfect absorbers for biosensing applications,” Plasmonics 9(6), 1265–1270 (2014).
[Crossref]

Wong, M.

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

Wu, C. J.

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Wu, D.

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

Wu, J.

J. Wu, “Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure,” Opt. Mater. 62, 47–51 (2016).
[Crossref]

Wu, L.

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Xiao, S.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Xiong, X.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Xu, J.

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xu, L.

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Yan, C. C.

Yan, Y.

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Yang, L.

Yang, W. H.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Yang, X.

Yang, Y.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Yang, Z.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Ye, H.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Yu, H.

Yu, L.

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

Yu, W. X.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Yu, X.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Yu, Z. Y.

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Yue, W. S.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Zhang, C.

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Zhang, H. S.

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Zhang, L.

Zhang, T.

Zhang, T. Y.

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

Zhang, X. J.

Zhang, X. N.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhang, X. X.

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Zhao, D.

Zhao, J.

Zhao, J. C.

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Zhao, Y.

Y. L. Liao and Y. Zhao, “Near-perfect absorption with a metallic grating and dielectric substrate,” J. Nanophotonics 9(1), 093087 (2015).
[Crossref]

Y. L. Liao and Y. Zhao, “Ultrabroad band absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Zhao, Z.

Zhou, H. Q.

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zi, J.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Zou, Y.

Zuo, D. L.

Adv. Funct. Mater. (1)

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[Crossref]

Adv. Mater. (1)

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Adv. Opt. Mater. (3)

Q. Y. Qian, T. Sun, Y. Yan, and C. H. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets, V. Duyne, and R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett. 99(21), 211106 (2011).
[Crossref]

Z. Q. Liu, H. B. Shao, G. Q. Liu, X. S. Liu, H. Q. Zhou, Y. Hu, X. N. Zhang, Z. J. Cai, and G. Gu, “λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing,” Appl. Phys. Lett. 104(8), 081116 (2014).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

IEEE J. Photovoltaics (1)

Y. Gao, Q. Gan, and F. J. Bartoli, “Research highlights on biosensors based on plasmonic nanostructures,” IEEE J. Photovoltaics 4(2), 620–625 (2014).
[Crossref]

IEEE Photonics J. (1)

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

J. Mod. Opt. (1)

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Opt. 63(2), 177–183 (2016).
[Crossref]

J. Nanophotonics (1)

Y. L. Liao and Y. Zhao, “Near-perfect absorption with a metallic grating and dielectric substrate,” J. Nanophotonics 9(1), 093087 (2015).
[Crossref]

Light: Sci. Appl. (1)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light: Sci. Appl. 3(4), e161 (2014).
[Crossref]

Mater. Lett. (1)

Y. Z. Cheng, H. S. Zhang, X. S. Mao, and R. Z. Gong, “Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application,” Mater. Lett. 219, 123–126 (2018).
[Crossref]

Materials (2)

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials 10(6), 591 (2017).
[Crossref]

A. A. Rifat, M. Rahmani, L. Xu, and A. E. Miroshnichenko, “Hybird metasurface based tunable near-perfect absorber and plasmonic sensor,” Materials 11(7), 1091 (2018).
[Crossref]

Mod. Phys. Lett. B (1)

H. Luo. and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Nano Lett. (4)

P. Tittl, R. Mai, D. Taubert, N. Dregely, H. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref]

G. J. Li, H. Li, Y. L. H. Jacob, M. Wong, and H. S. Kwok, “Nanopyramid structure for ultrathin c-si tandem solar cells,” Nano Lett. 14(5), 2563–2568 (2014).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Nanoscale (1)

W. H. Yang, C. Zhang, S. Sun, J. Jing, Q. Song, and S. Xiao, “Dark plasmonic mode based perfect absorption and refractive index sensing,” Nanoscale 9(26), 8907–8912 (2017).
[Crossref]

Nanoscale Res. Lett. (2)

D. Wu, R. F. Li, Y. M. Liu, Z. Y. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref]

R. F. Li, D. Wu, Y. M. Liu, L. Yu, Z. Y. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref]

Opt. Commun. (1)

Y. L. Liao and Y. Zhao, “Ultrabroad band absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (3)

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

J. Wu, “Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure,” Opt. Mater. 62, 47–51 (2016).
[Crossref]

Y. Z. Cheng, X. S. Mao, C. J. Wu, L. Wu, and R. R. Gong, “Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing,” Opt. Mater. 53, 195–200 (2016).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B: Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Plasmonics (2)

A. Jamali and B. Witzigmann, “Plasmonic perfect absorbers for biosensing applications,” Plasmonics 9(6), 1265–1270 (2014).
[Crossref]

W. S. Yue, Z. H. Wang, Y. Yang, J. G. Han, J. Q. Li, Z. B. Guo, H. Tan, and X. X. Zhang, “High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing,” Plasmonics 11(6), 1557–1563 (2016).
[Crossref]

RSC Adv. (1)

B. X. Wang, W. Q. Huang, and L. L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Sci. Rep. (1)

Y. F. C. Chau, C. K. Wang, L. F. Shen, C. M. Lim, H. P. Chiang, C. T. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref]

Sens. Actuators, B (1)

Z. Q. Liu, G. Q. Liu, S. Huang, X. S. Liu, P. P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators, B 215, 480–488 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the designed triple narrow-band perfect absorber: (a) the 3D array structure, (b-d) the front, lattice and perspective view of the unit-cell nanostructure, the relative permittivity of the gold.
Fig. 2.
Fig. 2. (a) Simulated reflectance (R(ω)) and absorbance (A(ω)) of proposed triple narrow-band plasmonic perfect absorber, (b-d) reflectance (R(ω)) and absorbance (A(ω)) under different resonant frequency.
Fig. 3.
Fig. 3. Distributions of the electric field Ex (in the yz plane) and magnetic field Hy (in the xz plane) of the middle plane of the unit-cell at resonance frequencies: (a,d) f1 = 239.2 THz, (b,e) f2 = 312.7 THz, and (c,f) f3 = 476.2 THz.
Fig. 4.
Fig. 4. The three-dimensional (3D) distributions of power loss density in the unit-cell structure at resonance frequencies: (a) f1 = 239.2 THz, (b) f2 = 312.7 THz, and (c) f3 = 476.2 THz.
Fig. 5.
Fig. 5. (a) The 3D array of the proposed perfect absorber covered with analyte, (b) the absorbance spectra of the perfect absorption-based sensor by changing the surrounding medium from air to aqueous glucose solution with different refractive index values, (c-e) the absorbance spectra at different resonant frequency domain. The inset in (b) is the unit-cell of the perfect absorption-based refractive index sensor.
Fig. 6.
Fig. 6. (a) Linear fit (solid lines) and simulated resonance wavelengths (hollow symbols) as a function of refractive index values of the surrounding analyte, (b-d) refractive index values of the surrounding analyte as a function of the different resonance wavelength domain.

Metrics